Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioconjug Chem ; 27(8): 1880-8, 2016 08 17.
Article in English | MEDLINE | ID: mdl-27412791

ABSTRACT

There is a considerable ongoing work to identify new cytotoxic payloads that are appropriate for antibody-based delivery, acting via mechanisms beyond DNA damage and microtubule disruption, highlighting their importance to the field of cancer therapeutics. New modes of action will allow a more diverse set of tumor types to be targeted and will allow for possible mechanisms to evade the drug resistance that will invariably develop to existing payloads. Spliceosome inhibitors are known to be potent antiproliferative agents capable of targeting both actively dividing and quiescent cells. A series of thailanstatin-antibody conjugates were prepared in order to evaluate their potential utility in the treatment of cancer. After exploring a variety of linkers, we found that the most potent antibody-drug conjugates (ADCs) were derived from direct conjugation of the carboxylic acid-containing payload to surface lysines of the antibody (a "linker-less" conjugate). Activity of these lysine conjugates was correlated to drug-loading, a feature not typically observed for other payload classes. The thailanstatin-conjugates were potent in high target expressing cells, including multidrug-resistant lines, and inactive in nontarget expressing cells. Moreover, these ADCs were shown to promote altered splicing products in N87 cells in vitro, consistent with their putative mechanism of action. In addition, the exposure of the ADCs was sufficient to result in excellent potency in a gastric cancer xenograft model at doses as low as 1.5 mg/kg that was superior to the clinically approved ADC T-DM1. The results presented herein therefore open the door to further exploring splicing inhibition as a potential new mode-of-action for novel ADCs.


Subject(s)
Biological Products/chemistry , Immunoconjugates/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Carboxylic Acids/chemistry , Cell Line, Tumor , Cell Transformation, Neoplastic , Cysteine/chemistry , Humans , Immunoconjugates/pharmacokinetics , Immunoconjugates/pharmacology , Lysine/chemistry , Maleimides/chemistry , Mice , Pyrans/chemistry , Tissue Distribution
2.
J Med Chem ; 56(17): 6819-28, 2013 Sep 12.
Article in English | MEDLINE | ID: mdl-23919824

ABSTRACT

Casein kinase 1δ (CK1δ) and 1ε (CK1ε) are believed to be necessary enzymes for the regulation of circadian rhythms in all mammals. On the basis of our previously published work demonstrating a CK1ε-preferring compound to be an ineffective circadian clock modulator, we have synthesized a series of pyrazole-substitued pyridine inhibitors, selective for the CK1δ isoform. Additionally, using structure-based drug design, we have been able to exploit differences in the hinge region between CK1δ and p38 to find selective inhibitors that have minimal p38 activity. The SAR, brain exposure, and the effect of these inhibitors on mouse circadian rhythms are described. The in vivo evaluation of these inhibitors demonstrates that selective inhibition of CK1δ at sufficient central exposure levels is capable of modulating circadian rhythms.


Subject(s)
Casein Kinase Idelta/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Proteins/chemistry , Ligands , Magnetic Resonance Spectroscopy , Mass Spectrometry , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...