Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 5(5): 719-40, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25740935

ABSTRACT

The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25-50%) than euchromatic reference regions (3-11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11-27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4-3.6 vs. 8.4-8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu.


Subject(s)
Drosophila Proteins/genetics , Drosophila/genetics , Evolution, Molecular , Genome , Genomics , Animals , Codon , Computational Biology , DNA Transposable Elements , Drosophila melanogaster/genetics , Exons , Gene Rearrangement , Heterochromatin , Introns , Molecular Sequence Annotation , Polytene Chromosomes , Repetitive Sequences, Nucleic Acid , Selection, Genetic , Species Specificity
2.
Genome Res ; 20(11): 1512-25, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20693478

ABSTRACT

Approximately 98% of mammalian DNA is noncoding, yet we understand relatively little about the function of this enigmatic portion of the genome. The cis-regulatory elements that control gene expression reside in noncoding regions and can be identified by mapping the binding sites of tissue-specific transcription factors. Cone-rod homeobox (CRX) is a key transcription factor in photoreceptor differentiation and survival, but its in vivo targets are largely unknown. Here, we used chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq) on CRX to identify thousands of cis-regulatory regions around photoreceptor genes in adult mouse retina. CRX directly regulates downstream photoreceptor transcription factors and their target genes via a network of spatially distributed regulatory elements around each locus. CRX-bound regions act in a synergistic fashion to activate transcription and contain multiple CRX binding sites which interact in a spacing- and orientation-dependent manner to fine-tune transcript levels. CRX ChIP-seq was also performed on Nrl(-/-) retinas, which represent an enriched source of cone photoreceptors. Comparison with the wild-type ChIP-seq data set identified numerous rod- and cone-specific CRX-bound regions as well as many shared elements. Thus, CRX combinatorially orchestrates the transcriptional networks of both rods and cones by coordinating the expression of photoreceptor genes including most retinal disease genes. In addition, this study pinpoints thousands of noncoding regions of relevance to both Mendelian and complex retinal disease.


Subject(s)
Chromatin Immunoprecipitation/methods , Homeodomain Proteins/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Retinal Cone Photoreceptor Cells/metabolism , Sequence Analysis, DNA , Trans-Activators/metabolism , Animals , Base Sequence , Binding Sites/genetics , Chromosome Mapping/methods , High-Throughput Nucleotide Sequencing , Homeodomain Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , Phylogeny , Protein Binding , Sequence Analysis, DNA/methods , Sequence Homology, Nucleic Acid , Trans-Activators/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...