Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1143870, 2023.
Article in English | MEDLINE | ID: mdl-37006290

ABSTRACT

Background: Herpes simplex viruses (HSV) cause ubiquitous human infections. For vaccine development, knowledge concerning correlates of protection is essential. Therefore, we investigated (I) if humans are in principle capable producing cell-to-cell spread inhibiting antibodies against HSV and (II) whether this capacity is associated with a reduced HSV-1 reactivation risk. Methods: We established a high-throughput HSV-1-ΔgE-GFP reporter virus-based assay and evaluated 2,496 human plasma samples for HSV-1 glycoprotein E (gE) independent cell-to-cell spread inhibiting antibodies. Subsequently, we conducted a retrospective survey among the blood donors to analyze the correlation between the presence of cell-to-cell spread inhibiting antibodies in plasma and the frequency of HSV reactivations. Results: In total, 128 of the 2,496 blood donors (5.1%) exhibited high levels of HSV-1 gE independent cell-to-cell spread inhibiting antibodies in the plasma. None of the 147 HSV-1 seronegative plasmas exhibited partial or complete cell-to-cell spread inhibition, demonstrating the specificity of our assay. Individuals with cell-to-cell spread inhibiting antibodies showed a significantly lower frequency of HSV reactivations compared to subjects without sufficient levels of such antibodies. Conclusion: This study contains two important findings: (I) upon natural HSV infection, some humans produce cell-to-cell spread inhibiting antibodies and (II) such antibodies correlate with protection against recurrent HSV-1. Moreover, these elite neutralizers may provide promising material for immunoglobulin therapy and information for the design of a protective vaccine against HSV-1.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Humans , Retrospective Studies , Viral Envelope Proteins , Immunization, Passive , Antibodies, Blocking
2.
Clin Infect Dis ; 68(4): 684-687, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30020413

ABSTRACT

Allogeneic stem cell transplantation (alloSCT) of homozygous CCR5 Δ32 stem cells once resulted in the cure of human immunodeficiency virus (HIV) infection. We have recently reported a viral breakthrough in a similar setting. Here, we demonstrate that the rapid rebound after alloSCT was related to a highly replicative CXCR4-tropic HIV variant, which could already be detected before alloSCT.


Subject(s)
HIV Infections/therapy , HIV/isolation & purification , Stem Cell Transplantation/methods , Transplantation, Homologous/methods , Viral Load , Viral Tropism , HIV/physiology , Humans , Receptors, CCR5/deficiency , Receptors, CXCR4/physiology , Treatment Outcome
3.
J Med Microbiol ; 67(10): 1496-1508, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30136921

ABSTRACT

PURPOSE: Renal impairment is a common complication after liver transplantation (LT). While BK polyomavirus (BKV) has been linked to renal failure in kidney transplant recipients, Torque teno virus (TTV) is a surrogate marker for immunosuppression that does not have a clear association with any human disease. The impact of BKV and TTV on renal impairment after LT is unknown. METHODOLOGY: In this retrospective study, urine and serum samples from 136 liver transplant recipients were screened for BKV and TTV by quantitative PCR. In addition, serum was screened for BKV-specific antibodies and the VP1 typing region was sequenced for BKV genotyping. All parameters were correlated with clinical data.Results/Key findings. BK viruria was detected up to 21 years after transplantation in 16.9 % of cases. BK viraemia was detected in 8.7 % of patients with BK viruria up to 4 years after LT. BKV-specific antibodies were detected in 93.6 % of all LT recipients and correlated with BKV viral load in urine. There was no correlation between renal impairment and the detection of BK DNA in urine (OR 0.983). TTV DNA was detected in 84.6 % of serum samples and in 66.6 % of urine samples. The TTV viral load in serum correlated with the BKV viral load but had no impact on renal impairment. CONCLUSION: Our data indicate that the detection of BKV and TTV is not a risk factor for renal impairment after LT. A correlation of TTV and BKV viral load seems to be an indicator for the immune status of the host.


Subject(s)
BK Virus/physiology , DNA Virus Infections/virology , Liver Diseases/surgery , Liver Transplantation/adverse effects , Polyomavirus Infections/virology , Renal Insufficiency, Chronic/virology , Torque teno virus/physiology , Adult , Aged , BK Virus/genetics , BK Virus/isolation & purification , DNA Virus Infections/etiology , DNA Virus Infections/physiopathology , Female , Humans , Male , Middle Aged , Polyomavirus Infections/etiology , Polyomavirus Infections/physiopathology , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/physiopathology , Retrospective Studies , Torque teno virus/genetics , Torque teno virus/isolation & purification , Transplant Recipients/statistics & numerical data , Viral Load , Virus Replication , Young Adult
4.
Front Microbiol ; 8: 2115, 2017.
Article in English | MEDLINE | ID: mdl-29163407

ABSTRACT

Herpes simplex virus (HSV) is a leading cause of blindness and viral encephalitis in the developed world. Upon reactivation from sensory neurons, HSV returns via axonal transport to peripheral tissues where it causes, e.g., severe, potentially blinding ocular diseases. In the present study we investigated whether the HSV-1/2 glycoprotein B-specific antibody mAb 2c or its humanized counterpart mAb hu2c can protect from ocular disease in a mouse model of HSV-1-induced acute retinal necrosis (ARN). In this model the viral spread from the initially infected to the contralateral eye resembles the routes taken in humans upon HSV reactivation. Systemic antibody treatment prior or early after infection effectively protected the mice from the development of ARN. These observations suggest that the antibody potently neutralized the infection and inhibited the viral transmission, since there was almost no virus detectable in the contralateral eyes and trigeminal ganglia of antibody treated mice. Besides of neutralizing free virus or limiting the infection via activating the complement or cellular effector functions, blocking of the anterograde directed neuron-to-cell spread of HSV represents a viable mode of action how mAb 2c protected the mice from ARN. We proved this hypothesis using a microfluidic chamber system. Neurons and epithelial cells were cultured in two separate compartments where the neurons sent axons via connecting microgrooves to the epithelial cells. Neurons were infected with a reporter HSV-1 strain expressing mCherry, and the co-culture was treated with neutralizing antibodies. In contrast to commercial polyclonal human HSV-neutralizing immunoglobulins, mAb 2c effectively blocked the anterograde directed neuron-to-cell transmission of the virus. Our data suggest that the humanized HSV-1/2-gB antibody protects mice from ocular disease by blocking the neuronal spread of HSV. Therefore, mAb hu2c may become a potent novel therapeutic option for severe ocular HSV infections.

5.
Med Microbiol Immunol ; 206(3): 203-215, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28220254

ABSTRACT

After the start of antiretroviral therapy (ART), plasma HIV-RNA levels should fall below the limit of detection (LOD) within 24 weeks. Hence, the prolonged decline of HIV-RNA after ART initiation is defined as persistent viremia (PV). In this retrospective study, we analyzed factors associated with PV. Next-generation sequencing of viral RNA/DNA was performed to study viral evolution and the emergence of drug-resistance mutations in HIV-infected patients with PV (n = 20). In addition, HIV-DNA species, immunological parameters, and clinical data of the patients were analyzed. We found that the possible causes for PV were divers, and both virologic and host parameters of this particular cohort were heterogeneous. We identified viruses with therapy-associated DRMs in six patients (30%); two of these were detected as minority variants. Five patients had sub-optimal drug levels (25%) and the baseline plasma viral loads were relatively high. Strikingly, we observed that >40% of the PV patients finally reaching HIV levels below the LOD later on showed up with episodes of low-level viremia (LLV). However, the amount of PBMC derived HIV-DNA species was not correlated with the likelihood of LLV after PV. According to our data, we conclude that drug-resistant viruses, sub-optimal drug level, and high baseline viral loads might be probable reasons for the prolonged RNA decline only in a sub-set of patients. In the absence of emerging DRMs and/or compliance issues, the clinical implications of PV remain unclear; however, PV appears to be a risk factor for episodes of LLV.


Subject(s)
HIV Infections/virology , HIV-1/classification , HIV-1/isolation & purification , Viremia , Anti-Retroviral Agents/pharmacokinetics , Anti-Retroviral Agents/therapeutic use , DNA, Viral/blood , Drug Resistance, Viral , Genetic Variation , Genotype , HIV Infections/drug therapy , HIV-1/genetics , High-Throughput Nucleotide Sequencing , Humans , Mutation, Missense , RNA, Viral/blood , Retrospective Studies
6.
Viral Immunol ; 29(3): 192-6, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27035639

ABSTRACT

Regulatory T cells (Tregs) play an important role in the pathogenesis of HIV-1 infection and they frequently express the chemokine receptor CCR5. We therefore investigated whether antiretroviral treatment with the CCR5 antagonist Maraviroc affected Tregs in chronically HIV-1-infected individuals. HIV-1-infected patients with high viral loads had elevated frequencies of activated Tregs in the peripheral blood compared with healthy controls. In patients successfully treated with antiretroviral drugs (undetectable viral loads), the frequency and the activation status of Tregs were comparable with healthy controls without any specific effect related to the treatment with Maraviroc. These results indicate that the control of viral replication in general rather than a direct binding of Maraviroc to CCR5-positive Tregs influences Treg responses in successfully treated chronically HIV-1-infected individuals.


Subject(s)
CCR5 Receptor Antagonists/therapeutic use , Cyclohexanes/therapeutic use , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1/immunology , Receptors, CCR5/drug effects , T-Lymphocytes, Regulatory/immunology , Triazoles/therapeutic use , Virus Replication/drug effects , Female , HIV Infections/virology , Humans , Male , Maraviroc , Receptors, CCR5/metabolism , T-Lymphocytes, Regulatory/drug effects , Viral Load/drug effects
7.
PLoS One ; 10(1): e0116800, 2015.
Article in English | MEDLINE | ID: mdl-25587898

ABSTRACT

The increasing incidence of acyclovir (ACV) and multidrug-resistant strains in patients with corneal HSV-1 infections leading to Herpetic Stromal Keratitis (HSK) is a major health problem in industrialized countries and often results in blindness. To overcome this obstacle, we have previously developed an HSV-gB-specific monoclonal antibody (mAb 2c) that proved to be highly protective in immunodeficient NOD/SCID-mice towards genital infections. In the present study, we examined the effectivity of mAb 2c in preventing the immunopathological disease HSK in the HSK BALB/c mouse model. Therefore, mice were inoculated with HSV-1 strain KOS on the scarified cornea to induce HSK and subsequently either systemically or topically treated with mAb 2c. Systemic treatment was performed by intravenous administration of mAb 2c 24 h prior to infection (pre-exposure prophylaxis) or 24, 40, and 56 hours after infection (post-exposure immunotherapy). Topical treatment was performed by periodical inoculations (5 times per day) of antibody-containing eye drops as control, starting at 24 h post infection. Systemic antibody treatment markedly reduced viral loads at the site of infection and completely protected mice from developing HSK. The administration of the antiviral antibody prior or post infection was equally effective. Topical treatment had no improving effect on the severity of HSK. In conclusion, our data demonstrate that mAb 2c proved to be an excellent drug for the treatment of corneal HSV-infections and for prevention of HSK and blindness. Moreover, the humanized counterpart (mAb hu2c) was equally effective in protecting mice from HSV-induced HSK when compared to the parental mouse antibody. These results warrant the future development of this antibody as a novel approach for the treatment of corneal HSV-infections in humans.


Subject(s)
Antibodies, Monoclonal/immunology , Glycoproteins/immunology , Keratitis, Herpetic/immunology , Keratitis, Herpetic/prevention & control , Simplexvirus/immunology , Acyclovir/immunology , Animals , Antiviral Agents/immunology , Chlorocebus aethiops , Corneal Stroma/immunology , Corneal Stroma/virology , Female , Herpes Simplex/complications , Herpes Simplex/virology , Immunoglobulins/immunology , Keratitis, Herpetic/etiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...