Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 14(43): 49181-49188, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36256601

ABSTRACT

In this work, palladium-loaded smart membranes made by UV cross-linking of thermoresponsive microgels are prepared to obtain a reusable, catalytically active material which can, for example, be implemented in chemical reactors. The membranes are examined with respect to their coverage of a supporting mesh via atomic force microscopy measurements. Force indentation mapping was performed in the dried, collapsed state and in the swollen state in water to determine the Young modulus. Furthermore, we compare the catalytic activity of the membrane with the corresponding suspended colloidal nanoparticle microgel hybrids. For this purpose, the reduction of 4-nitrophenol is an established model reaction to quantify the catalytic activity by UV-vis spectroscopy. The membrane is embedded inside a continuous stirred tank reactor equipped for continuous monitoring of the reaction progress. Although catalysis with membranes shows lower catalytic activity than freely dispersed particles, membranes allow straightforward separation and recycling of the catalyst. The fabricated membranes in this work show no decrease in catalytic activity between several cycles, unlike free particles. The feasible and durable deposition of catalytically active inter-cross-linked microgel particles on commercial nylon meshes as supporting scaffolds, as demonstrated in this work, is promising for up-scaling of continuous industrial processes.

2.
Front Chem ; 10: 889521, 2022.
Article in English | MEDLINE | ID: mdl-35692683

ABSTRACT

In this work, we present core-shell microgels with tailor-made architecture and properties for the incorporation of palladium nanoparticles. The microgel core consists of poly-N-isopropylacrylamide (PNIPAM) copolymerized with methacrylic acid (MAc) as anchor point for the incorporation of palladium nanoparticles. The microgel shell is prepared by copolymerization of NIPAM and the UV-sensitive comonomer 2-hydroxy-4-(methacryloyloxy)-benzophenone (HMABP). The obtained core-shell architecture was analyzed by means of photon correlation spectroscopy, while the incorporated amount of HMABP was further confirmed via Fourier transform infrared spectroscopy. Subsequently, the microgel system was used for loading with palladium nanoparticles and their size and localization were investigated by transmission electron microscopy. The catalytic activity of the monodisperse palladium nanoparticles was tested by reduction of 4-nitrophenol to 4-aminophenol. The obtained reaction rate constants for the core-shell system showed enhanced activity compared to the Pd-loaded bare core system. Furthermore, it was possible to recycle the catalyst several times. Analysis via transmission electron microscopy revealed, that the incorporated palladium nanoparticles emerged undamaged after the reaction and subsequent purification process since no aggregation or loss in size was observed.

3.
Langmuir ; 38(2): 638-651, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34982566

ABSTRACT

In this study we show a possibility to produce thermoresponsive, free-standing microgel membranes based on N-isopropylacrylamide (NIPAM) and the UV-sensitive comonomer 2-hydroxy-4-(methacryloyloxy)benzophenone (HMABP). To influence the final network structure and functionality of the membranes, we use different cross-linkers in the microgel syntheses and characterize the resulting structural microgel properties and the swelling behavior by means of AFM, FTIR, and PCS measurements. Varying the cross-linker results in significant changes in the structure and swelling behavior of the individual microgels and has an influence on the incorporation of the comonomer, which is essential for subsequent photochemical membrane formation. We investigate the ion transport through the different membranes by temperature-dependent resistance measurements revealing a sharp increase in resistance when the copolymer microgels reach their collapsed state. The resistance of the membranes can be adjusted by different cross-linkers and the associated incorporation of the comonomer. Furthermore, we show that transferring a reversible cross-linker from a cross-linked state to an un-cross-linked state strongly influences the membrane properties and even reverses the switching behavior, while the mechanical stability of the membrane is maintained.


Subject(s)
Microgels , Gels , Polymers , Temperature
4.
Small ; 17(46): e2102975, 2021 11.
Article in English | MEDLINE | ID: mdl-34643032

ABSTRACT

Filtration through membranes with nanopores is typically associated with high transmembrane pressures and high energy consumption. This problem can be addressed by reducing the respective membrane thickness. Here, a simple procedure is described to prepare ultrathin membranes based on protein nanopores, which exhibit excellent water permeance, two orders of magnitude superior to comparable, industrially applied membranes. Furthermore, incorporation of either closed or open protein nanopores allows tailoring the membrane's ion permeability. To form such membranes, the transmembrane protein ferric hydroxamate uptake protein component A (FhuA) or its open-pore variant are assembled at the air-water interface of a Langmuir trough, compressed to a dense film, crosslinked by glutaraldehyde, and transferred to various support materials. This approach allows to prepare monolayer or multilayer membranes with a very high density of protein nanopores. Freestanding membranes covering holes up to 5 µm in diameter are visualized by atomic force microscopy (AFM), helium ion microscopy, and transmission electron microscopy. AFM PeakForce quantitative nanomechanical property mapping (PeakForce QNM)  demonstrates remarkable mechanical stability and elastic properties of freestanding monolayer membranes with a thickness of only 5 nm. The new protein membrane can pave the way to energy-efficient nanofiltration.


Subject(s)
Nanopores , Membranes, Artificial , Microscopy, Atomic Force , Microscopy, Electron, Transmission
5.
Molecules ; 26(11)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073361

ABSTRACT

CBD is a promising candidate for treatment of many diseases and plays a major role in the growing trend to produce high-end drugs from natural, renewable resources. In the present work, we demonstrate a way to incorporate the anti-inflammatory drug CBD into smart microgel particles. The copolymer microgels that we chose as carrier systems exhibit a volume phase transition temperature of 39 ∘C, which is just above normal body temperature and makes them ideal candidates for hyperthermia treatment. While a simple loading route of CBD was not successful due to the enormous hydrophobicity of CBD, an alternative route was developed by immersing the microgels in ethanol. Despite the expected loss of thermoresponsive behaviour of the microgel matrix due to the solvent exchange, a temperature-dependent release of CBD was detected by the material, creating an interesting question of interactions between CBD and the microgel particles in ethanol. Furthermore, the method developed for loading of the microgel particles with CBD in ethanol was further improved by a subsequent transfer of the loaded particles into water, which proves to be an even more promising approach due to the successful temperature-dependent release of the drug above the collapse temperature of the microgels.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cannabidiol/pharmacology , Drug Delivery Systems , Drug Liberation , Microgels , Acrylamides/chemistry , Anti-Inflammatory Agents/analysis , Cannabidiol/analysis , Ethanol , Gels , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force , Phase Transition , Photons , Polymers/chemistry , Scattering, Radiation , Solvents , Spectrophotometry, Ultraviolet , Surface-Active Agents , Temperature
6.
Polymers (Basel) ; 13(5)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800332

ABSTRACT

While cationic microgels are potentially useful for the transfection or transformation of cells, their synthesis has certain drawbacks regarding size, polydispersity, yield, and incorporation of the cationic comonomers. In this work, a range of poly(N-isopropylacrylamide) (PNIPAM) microgels with different amounts of the primary amine N-(3-aminopropyl)methacrylamide hydrochloride (APMH) as the cationic comonomer were synthesized. Moreover, the pH-value during reaction was varied for the synthesis of microgels with 10 mol% APMH-feed. The microgels were analyzed by means of their size, thermoresponsive swelling behavior, synthesis yield, polydispersity and APMH-incorporation. The copolymerization of APMH leads to a strong decrease in size and yield of the microgels, while less than one third of the nominal APMH monomer feed is incorporated into the microgels. With an increase of the reaction pH up to 9.5, the negative effects of APMH copolymerization were significantly reduced. Above this pH, synthesis was not feasible due to aggregation. The results show that the reaction pH has a strong influence on the synthesis of pH-responsive cationic microgels and therefore it can be used to tailor the microgel properties.

7.
Soft Matter ; 17(8): 2205-2214, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33459755

ABSTRACT

Poly(N-isopropylacrylamide) (pNIPAM) based copolymer microgels were used to create free-standing, transferable, thermoresponsive membranes. The microgels were synthesized by copolymerization of NIPAM with N-benzylhydrylacrylamide (NBHAM). Monolayers of these colloidal gels were subsequently cross-linked using an electron gun leading to the formation of a connected monolayer. Furthermore, the cross-linked microgel layer is detached from the supporting material by dissolving the substrate. These unique systems can be used as transferable, thermoresponsive coatings and as thermoresponsive membranes. As a proof of principle for the use of such membranes we studied the ion transport through them at different temperatures revealing drastic changes when the lower critical solution temperature of the copolymer microgels is reached.

8.
RSC Adv ; 11(36): 22014-22024, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-35480797

ABSTRACT

In this study we use poly(N-isopropylacrylamide) (PNIPAM) based copolymer microgels to create free-standing, transferable, thermoresponsive membranes. The microgels are synthesized by copolymerization of NIPAM with 2-hydroxy-4-(methacryloyloxy)-benzophenone (HMABP) and spin-coated on Si wafers. After subsequent cross-linking by UV-irradiation, the formed layers easily detach from the supporting material. We obtain free standing microgel membranes with lateral extensions of several millimetres and an average layer thickness of a few hundred nanometres. They can be transferred to other substrates. As one example for potential applications we investigate the temperature dependent ion transport through the membranes via resistance measurements revealing a sharp reversible increase in resistance when the lower critical solution temperature of the copolymer microgels is reached. In addition, prior to cross-linking, the microgels can be decorated with silver nanoparticles and cross-linked afterwards. Such free-standing nanoparticle hybrid membranes are then used as catalytic systems for the reduction of 4-nitrophenol, which is monitored by UV/Vis spectroscopy.

9.
Nanoscale Adv ; 2(1): 323-331, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-36134006

ABSTRACT

We investigate the internal morphology of smart core-shell microgels by super-resolution fluorescence microscopy exploiting a combination of 3D single molecule localization and structured illumination microscopy utilizing freely diffusing fluorescent dyes. This approach does not require any direct chemical labeling and does not perturb the network structure of these colloidal gels. Hence, it allows us to study the morphology of the particles with very high precision. We found that the structure of the core-forming seed particles is drastically changed by the second synthesis step necessary for making the shell, resulting in a core region with highly increased dye localization density. The present work shows that super-resolution microscopy has great potential with respect to the study of soft colloidal systems.

10.
Polymers (Basel) ; 11(8)2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31370213

ABSTRACT

The present study focuses on the development of multiresponsive core-shell microgels and the manipulation of their swelling properties by copolymerization of different acrylamides-especially N-isopropylacrylamide (NIPAM), N-isopropylmethacrylamide (NIPMAM), and NNPAM-and acrylic acid. We use atomic force microscopy for the dry-state characterization of the microgel particles and photon correlation spectroscopy to investigate the swelling behavior at neutral (pH 7) and acidic (pH 4) conditions. A transition between an interpenetrating network structure for microgels with a pure poly-N,-n-propylacrylamide (PNNPAM) shell and a distinct core-shell morphology for microgels with a pure poly-N-isopropylmethacrylamide (PNIPMAM) shell is observable. The PNIPMAM molfraction of the shell also has an important influence on the particle rigidity because of the decreasing degree of interpenetration. Furthermore, the swelling behavior of the microgels is tunable by adjustment of the pH-value between a single-step volume phase transition and a linear swelling region at temperatures corresponding to the copolymer ratios of the shell. This flexibility makes the multiresponsive copolymer microgels interesting candidates for many applications, e.g., as membrane material with tunable permeability.

SELECTION OF CITATIONS
SEARCH DETAIL
...