Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Calcium ; 38(1): 35-44, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15955561

ABSTRACT

FK506 and rapamycin are immunosuppressant drugs that disrupt the interaction of FK506-binding proteins (FKBPs) with ryanodine receptors (RyR1), which form homotetrameric Ca2+ release channels in the sarcoplasmic reticulum (SR) of skeletal muscle. Here, we characterized the effects of short-term treatment (2 h) of skeletal myotubes with either 20 microM FK506 or 20 microM rapamycin on excitation-contraction (EC) coupling, sarcolemmal dihydropyridine receptor (DHPR) function, resting intracellular Ca2+, and levels of SR Ca2+ content. Both rapamycin and FK506 produced remarkably similar effects. Specifically, both drugs reduced the maximal amplitude of voltage-gated SR Ca2+ release ((DeltaF/F)max) by 70-75% in parallel with a 50% reduction in both maximal immobilization resistant charge movement (Qmax) and L-type Ca2+ channel conductance (Gmax). Neither immunosupressant significantly altered steady-state levels of either resting myoplasmic Ca2+ or SR Ca2+ content. Thus, store depletion does not account for the observed reduction in Ca2+ release during EC coupling. Instead, the inhibitory effect on voltage-gated SR Ca2+ release is explained by significant reductions in both the number of functional sarcolemmal voltage sensors and the intrinsic gain of voltage-gated Ca2+ release (i.e. the maximal rate of Ca2+ release per unit gating charge).


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium/metabolism , Immunosuppressive Agents/pharmacology , Muscle, Skeletal/physiology , Sirolimus/pharmacology , Tacrolimus/pharmacology , Animals , Electrophysiology , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/drug effects , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/physiology , Sarcoplasmic Reticulum/physiology
2.
J Biol Chem ; 278(25): 22600-8, 2003 Jun 20.
Article in English | MEDLINE | ID: mdl-12704193

ABSTRACT

The skeletal muscle sarcoplasmic reticulum (SR) Ca2+ release channel or ryanodine receptor (RyR1) binds four molecules of FKBP12, and the interaction of FKBP12 with RyR1 regulates both unitary and coupled gating of the channel. We have characterized the physiologic effects of previously identified mutations in RyR1 that disrupt FKBP12 binding (V2461G and V2461I) on excitation-contraction (EC) coupling and intracellular Ca2+ homeostasis following their expression in skeletal myotubes derived from RyR1-knockout (dyspedic) mice. Wild-type RyR1-, V246I-, and V2461G-expressing myotubes exhibited similar resting Ca2+ levels and maximal responses to caffeine (10 mm) and cyclopiazonic acid (30 microm). However, maximal voltage-gated Ca2+ release in V2461G-expressing myotubes was reduced by approximately 50% compared with that attributable to wild-type RyR1 (deltaF/Fmax = 1.6 +/- 0.2 and 3.1 +/- 0.4, respectively). Dyspedic myotubes expressing the V2461I mutant protein, that binds FKBP12.6 but not FKBP12, exhibited a comparable reduction in voltage-gated SR Ca2+ release (deltaF/Fmax = 1.0 +/- 0.1). However, voltage-gated Ca2+ release in V2461I-expressing myotubes was restored to a normal level (deltaF/Fmax = 2.9 +/- 0.6) following co-expression of FKBP12.6. None of the mutations that disrupted FKBP binding to RyR1 significantly affected RyR1-mediated enhancement of L-type Ca2+ channel activity (retrograde coupling). These data demonstrate that FKBP12 binding to RyR1 enhances the gain of skeletal muscle EC coupling.


Subject(s)
Muscle Contraction/physiology , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology , Ryanodine Receptor Calcium Release Channel/physiology , Tacrolimus Binding Protein 1A/metabolism , Amino Acid Substitution , Animals , Calcium/physiology , Cells, Cultured , DNA, Complementary/administration & dosage , DNA, Complementary/genetics , Mice , Microinjections , Mutagenesis, Site-Directed , Protein Binding , Recombinant Proteins/metabolism , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/genetics , Sarcoplasmic Reticulum/physiology
3.
J Gen Physiol ; 121(4): 277-86, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12642598

ABSTRACT

Human central core disease (CCD) is caused by mutations/deletions in the gene that encodes the skeletal muscle ryanodine receptor (RyR1). Previous studies have shown that CCD mutations in the NH2-terminal region of RyR1 lead to the formation of leaky SR Ca2+ release channels when expressed in myotubes derived from RyR1-knockout (dyspedic) mice, whereas a COOH-terminal mutant (I4897T) results in channels that are not leaky to Ca2+ but lack depolarization-induced Ca2+ release (termed excitation-contraction [EC] uncoupling). We show here that store depletion resulting from NH2-terminal (Y523S) and COOH-terminal (Y4795C) leaky CCD mutant release channels is eliminated after incorporation of the I4897T mutation into the channel (Y523S/I4897T and Y4795C/I4897T). In spite of normal SR Ca2+ content, myotubes expressing the double mutants lacked voltage-gated Ca2+ release and thus exhibited an EC uncoupling phenotype similar to that of I4897T-expressing myotubes. We also show that dyspedic myotubes expressing each of seven recently identified CCD mutations located in exon 102 of the RyR1 gene (G4890R, R4892W, I4897T, G4898E, G4898R, A4905V, R4913G) behave as EC-uncoupled release channels. Interestingly, voltage-gated Ca2+ release was nearly abolished (reduced approximately 90%) while caffeine-induced Ca2+ release was only marginally reduced in R4892W-expressing myotubes, indicating that this mutation preferentially disrupts voltage-sensor activation of release. These data demonstrate that CCD mutations in exon 102 disrupt release channel permeation to Ca2+ during EC coupling and that this region represents a primary molecular locus for EC uncoupling in CCD.


Subject(s)
Calcium/metabolism , Muscle Contraction , Muscle Fibers, Skeletal/chemistry , Muscle Fibers, Skeletal/metabolism , Myopathy, Central Core/metabolism , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/metabolism , Amino Acid Sequence , Animals , Calcium Signaling , Cells, Cultured , Humans , Ion Channel Gating , Mice , Molecular Sequence Data , Mutagenesis, Site-Directed , Myopathy, Central Core/genetics , Porosity , Rabbits , Ryanodine Receptor Calcium Release Channel/genetics , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL