Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 482(2): 172-6, 2010 Sep 27.
Article in English | MEDLINE | ID: mdl-20643186

ABSTRACT

The objective of the study was to investigate neuronal processing during the encoding, retention and retrieval phases of a serial visual working memory task. Particularly, we were interested in how these phases are affected by working memory load and how processing is modulated by methylphenidate. Healthy adults were asked to memorize the order of four, five or six pictures under methylphenidate (20mg) and under placebo while brain electrical activity was recorded. On the performance level, the number of correct responses decreased with increasing working memory load. Concerning brain electrical activity, in the encoding phase P3 amplitudes increased at midline electrodes with increasing memory load while load had no effect in the retention and retrieval phase. Medication neither influenced performance nor the different processing stages significantly. Our data provide evidence that during the encoding phase more attentional resources are allocated in trials with higher load as reflected by larger P3 amplitudes.


Subject(s)
Adrenergic Uptake Inhibitors/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Evoked Potentials, Visual/drug effects , Memory, Short-Term/drug effects , Methylphenidate/pharmacology , Serial Learning/drug effects , Visual Perception/drug effects , Adult , Brain/drug effects , Brain/physiology , Electroencephalography , Female , Humans , Male , Mental Recall/drug effects , Retention, Psychology/drug effects
2.
Behav Brain Funct ; 5: 12, 2009 Feb 27.
Article in English | MEDLINE | ID: mdl-19250519

ABSTRACT

BACKGROUND: Motor system excitability is based on a complex interaction of excitatory and inhibitory processes, which in turn are modulated by internal (e.g., volitional inhibition) and external (e.g., drugs) factors. A well proven tool to investigate motor system excitability in vivo is the transcranial magnetic stimulation (TMS). In this study, we used TMS to investigate the effects of methylphenidate (MPH) on the temporal dynamics of motor system excitability during a go/nogo task. METHODS: Using a double-blind, placebo-controlled, crossover design, 14 healthy adults (8 male, 6 female; aged 20-40 yrs) performed a spatial go/nogo task (S1-S2 paradigm) either under dl-methylphenidate (MPH, 20 mg) or placebo. TMS single and double-pulses (interstimulus interval: 3 ms) were delivered either at 120, 230 or 350 ms after the S2 stimulus (control, go and nogo trials). RESULTS: At the performance level, faster reaction times and a trend towards less impulsivity errors under MPH vs. placebo were observed.In nogo trials, i.e., when a prepared response had to be inhibited, motor evoked potentials (MEPs) had a smaller amplitude at an interval of 230 ms compared to 120 and 350 ms. The short-interval intracortical inhibition (SICI) increased over time.Under MPH, SICI in nogo trials was larger compared to placebo. With the interval between S2 and the TMS-pulse increasing, MEP amplitudes increased under MPH in nogo trials but an early inhibitory effect (at 120 ms) could also be observed. CONCLUSION: Our results show a distinct pattern of excitatory and inhibitory phenomena in a go/nogo task. MPH appears to significantly alter the dynamics of motor system excitability. Our findings suggest that a single dose of 20 mg MPH provides some fine-tuning of the motor system in healthy adults.

SELECTION OF CITATIONS
SEARCH DETAIL
...