Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem ; 17(5): 2091-100, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19200741

ABSTRACT

Checkpoint deficiency of malignant cells can be exploited in cancer drug discovery. Compounds that selectively kill checkpoint-deficient cells versus checkpoint-proficient cells can be utilized to preferentially target tumor cells, while sparing normal cells. The protein p21(Wafl/Cipl/Sdi1) (hereafter referred to as p21) inhibits progression of the cell cycle by inhibiting the activity of G1 kinases (cyclin D/cdk4 and cyclin E-cdk2) and the G2 kinase (cyclin B/cdkl) in response to DNA damage or abnormal DNA content. The expression of p21 is often low in human cancer cells due to frequent loss of the upstream activator, p53, and is associated with poor prognosis in some cancer patients. Using an isogenic pair of cell lines, HCT116 (p21+/+) and 80S14 (p21-/-), we have disclosed previously a novel series of pyrazolo[1,5-a]pyrimidines that preferentially kill the p21-deficient cells. We will present the synthesis, biological activities and SAR study of a series of pyrazolo[1,5-a]pyrimidines with an optimized phenyl amide moiety at the C-7 position. The mechanism of action of these compounds will also be discussed.


Subject(s)
Amides/chemical synthesis , Amides/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Pyrazoles/chemistry , Pyrimidines/chemistry , Amides/chemistry , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 4/metabolism , Humans , Mice , Mice, Nude , Structure-Activity Relationship , Transplantation, Heterologous
2.
Bioorg Med Chem ; 17(1): 111-8, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19041247

ABSTRACT

The synthesis and SAR of a series of 6-chloro-4-fluoroalkylamino-2-heteroaryl-5-(substituted)phenylpyrimidines as anti-cancer agents are described. This series of 2-heteroarylpyrimidines was developed by modifying a series of anti-tumor [1,2,4]triazolo[1,5-a]pyrimidines and 2-cyanoaminopyrimidines we reported earlier. For the 2-heteroaryl group, the best activity is obtained when the heteroaryl group has a nitrogen atom at the ortho-position to the pyrimidyl core. The structure-activity relationship for the rest of the molecule in this 2-heteroarylpyrimidine series mimics that of the [1,2,4]triazolo[1,5-a]pyrimidine series. Like triazolopyrimidines and 2-cyanoaminopyrimidines, the 2-heteroarylpyrimidines retain the capability to overcome multidrug resistance due to Pgp. Mechanism of action studies showed that the lead compounds behaved in the same manner as triazolopyrimidines and 2-cyanoaminopyrimidines. The lead compounds in this series are more potent than the corresponding triazolopyrimidines in vitro and in vivo. Compound 21 (PTI-868) showed tumor growth inhibition in several nude mouse xenograft models, and was selected to advance to preclinical development.


Subject(s)
Antineoplastic Agents/chemical synthesis , Pyrimidines/chemical synthesis , Animals , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Humans , Mice , Mice, Nude , Neoplasms/drug therapy , Pyrimidines/pharmacology , Structure-Activity Relationship , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
3.
Cancer Res ; 68(7): 2292-300, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18381436

ABSTRACT

5-Chloro-6-[2,6-difluoro-4-[3-(methylamino)propoxy]phenyl]-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-[1,2,4]triazolo[1,5-a]pyrimidin-7-amine butanedioate (TTI-237) is a microtubule-active compound of novel structure and function. Structurally, it is one of a class of compounds, triazolo[1,5a]pyrimidines, previously not known to bind to tubulin. Functionally, TTI-237 inhibited the binding of [(3)H]vinblastine to tubulin, but it caused a marked increase in turbidity development that more closely resembled the effect observed with docetaxel than that observed with vincristine. The morphologic character of the presumptive polymer is unknown at present. When applied to cultured human tumor cells at concentrations near its IC(50) value for cytotoxicity (34 nmol/L), TTI-237 induced multiple spindle poles and multinuclear cells, as did paclitaxel, but not vincristine or colchicine. Flow cytometry experiments revealed that, at low concentrations (20-40 nmol/L), TTI-237 produced sub-G(1) nuclei and, at concentrations above 50 nmol/L, it caused a strong G(2)-M block. The compound was a weak substrate of multidrug resistance 1 (multidrug resistance transporter or P-glycoprotein). In a cell line expressing a high level of P-glycoprotein, the IC(50) of TTI-237 increased 25-fold whereas those of paclitaxel and vincristine increased 806-fold and 925-fold, respectively. TTI-237 was not recognized by the MRP or MXR transporters. TTI-237 was active in vivo in several nude mouse xenograft models of human cancer, including LoVo human colon carcinoma and U87-MG human glioblastoma, when dosed i.v. or p.o. Thus, TTI-237 has a set of properties that distinguish it from other classes of microtubule-active compounds.


Subject(s)
Antineoplastic Agents/pharmacology , Hydrocarbons, Halogenated/pharmacology , Triazoles/pharmacology , Animals , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Drug Screening Assays, Antitumor , Female , HeLa Cells , Humans , Mice , Mice, Nude , Microtubules/drug effects , Microtubules/metabolism , Tubulin/metabolism , Xenograft Model Antitumor Assays
4.
Clin Cancer Res ; 12(11 Pt 1): 3459-69, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16740771

ABSTRACT

PURPOSE: Because resistance to paclitaxel and docetaxel is frequently observed in the clinic, new anti-microtubule agents have been sought. The aim of this study was to evaluate the efficacy and oral activity of a novel taxane (MST-997) in paclitaxel- and docetaxel-resistant tumor models in vitro and in vivo. EXPERIMENTAL DESIGN: Tubulin polymerization assays, immunohistochemistry, and cell cycle analysis was used to evaluate mechanism of action of MST-997. The effect of MST-997 on growth inhibition in a panel of paclitaxel- and docetaxel-resistant cell lines that overexpressed P-glycoprotein (MDR1) or harbored beta-tubulin mutations were assayed in vitro and in murine xenografts. RESULTS: MST-997 induced microtubule polymerization (EC50 = 0.9 micromol/L) and bundling, resulting in G2-M arrest and apoptosis. In addition, MST-997 was a potent inhibitor of paclitaxel- and docetaxel-sensitive tumor cell lines that did not have detectable P-glycoprotein (IC50 = 1.8 +/- 1.5 nmol/L). Minimal resistance (1- to 8-fold) to MST-997 was found in cell lines that either overexpressed MDR1 or harbored point mutations in beta-tubulin. Most notable, MST-997 displayed superior in vivo efficacy as a single i.v. or p.o. dose either partially or completely inhibited tumor growth in paclitaxel- and docetaxel-resistant xenografts. CONCLUSIONS: MST-997 represents a potent and orally active microtubule-stabilizing agent that has greater pharmacologic efficacy in vitro and in vivo than the currently approved taxanes. Our findings suggest that MST-997, which has entered phase I clinical trials, may have broad therapeutic value.


Subject(s)
Antineoplastic Agents/pharmacology , Paclitaxel/pharmacology , Taxoids/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Binding Sites , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Docetaxel , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Female , Humans , In Situ Hybridization, Fluorescence , Injections, Intravenous , Mice , Mice, Nude , Molecular Conformation , Paclitaxel/chemistry , Stereoisomerism , Taxoids/administration & dosage , Taxoids/chemistry , Tubulin/drug effects , Xenograft Model Antitumor Assays
5.
Proc Natl Acad Sci U S A ; 103(20): 7817-22, 2006 May 16.
Article in English | MEDLINE | ID: mdl-16672372

ABSTRACT

The tyrosine kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva) have shown anti-tumor activity in the treatment of non-small cell lung cancer (NSCLC). Dramatic and durable responses have occurred in NSCLC tumors with mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR). In contrast, these inhibitors have shown limited efficacy in glioblastoma, where a distinct EGFR mutation, the variant III (vIII) in-frame deletion of exons 2-7, is commonly found. In this study, we determined that EGFRvIII mutation was present in 5% (3/56) of analyzed human lung squamous cell carcinoma (SCC) but was not present in human lung adenocarcinoma (0/123). We analyzed the role of the EGFRvIII mutation in lung tumorigenesis and its response to tyrosine kinase inhibition. Tissue-specific expression of EGFRvIII in the murine lung led to the development of NSCLC. Most importantly, these lung tumors depend on EGFRvIII expression for maintenance. Treatment with an irreversible EGFR inhibitor, HKI-272, dramatically reduced the size of these EGFRvIII-driven murine tumors in 1 week. Similarly, Ba/F3 cells transformed with the EGFRvIII mutant were relatively resistant to gefitinib and erlotinib in vitro but proved sensitive to HKI-272. These findings suggest a therapeutic strategy for cancers harboring the EGFRvIII mutation.


Subject(s)
ErbB Receptors/metabolism , Lung Neoplasms , Protein Isoforms/metabolism , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases , Quinazolines/therapeutic use , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/therapeutic use , Cell Line , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Erlotinib Hydrochloride , Gefitinib , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Knockout , Mutation , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Kinase Inhibitors/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Quinazolines/metabolism , Quinolines/metabolism , Tumor Suppressor Protein p14ARF/genetics , Tumor Suppressor Protein p14ARF/metabolism
6.
Int J Oncol ; 28(3): 675-84, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16465373

ABSTRACT

Calicheamicin is a potent chemotherapeutic with a low therapeutic index that requires targeting to tumor cells for its use in the clinic. To treat acute myeloid leukemia, calicheamicin has been conjugated to an antibody that recognizes CD33 (gemtuzumab ozogamicin). The application range of this 'active' targeting strategy is limited since it depends on specific antigen expression by tumor cells. This limitation could be reduced by using an antigen-independent 'passive targeting' strategy for calicheamicin. 'Passive targeting' relies on the dysfunctional vasculature of a neoplastic tumor that allows enhanced retention of macromolecules. We studied the efficacy of calicheamicin conjugated to various carrier molecules: i.e. immunoglobulin, albumin or PEGylated Fc fragments. In nude mice, a conjugate of anti-CD33 and calicheamicin accumulates in human tumor xenografts in the absence of detectable amounts of targeting antigen. Passive targeting provided sufficient accumulation of this conjugate to inhibit tumor growth of 10 different CD33-negative xenograft models. This efficacy depended on the use of an acid-labile linker between antibody and calicheamicin. Substitution of immunoglobulin as a carrier with either albumin or PEGylated Fc reduced or eliminated the efficacy of the conjugate. The results showed that using 'non-specific' immunoglobulin for passive targeting of calicheamicin might be an effective mode of cancer therapy.


Subject(s)
Aminoglycosides/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Immunoconjugates/therapeutic use , Xenograft Model Antitumor Assays/methods , Aminoglycosides/pharmacokinetics , Aminoglycosides/pharmacology , Animals , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized , Antibodies, Monoclonal, Murine-Derived , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Female , Gemtuzumab , HT29 Cells , Humans , Immunoconjugates/pharmacokinetics , Immunoconjugates/pharmacology , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/therapeutic use , Inhibitory Concentration 50 , Male , Mice , Mice, Nude , Polyethylene Glycols/chemistry , Rituximab , Serum Albumin/therapeutic use
7.
J Med Chem ; 48(24): 7560-81, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16302797

ABSTRACT

A series of 2-(quinazolin-4-ylamino)-[1,4] benzoquinone derivatives that function as potent covalent-binding, irreversible inhibitors of the kinase domain of vascular endothelial growth factor receptor-2 (VEGFR-2) has been prepared by ceric ammonium nitrate oxidation of substituted (2,5-dimethoxyphenyl)(6,7-disubstituted-quinazolin-4-yl)amines and by displacement of the chlorine atom of substituted 2-chloro-5-(6,7-disubstituted-quinazolin-4-ylamino)-[1,4]benzoquinones with various amines, anilines, phenols, and alcohols. Enzyme studies were conducted in the absence and presence of glutathione and plasma. Several of the compounds inhibit VEGF-stimulated autophosphorylation in intact cells. Kinetic experiments were performed to study the reactivity of selected inhibitors toward glutathione. Reactivities correlated with LUMO energies calculated as averages of those of individual conformers weighted by the Boltzmann distribution. These results and molecular modeling were used to rationalize the biological observations. The compounds behave as non-ATP-competitive inhibitors. Unequivocal evidence, from mass spectral studies, indicates that these inhibitors form a covalent interaction with Cys-1045. One member of this series displays antitumor activity in an in vivo model.


Subject(s)
Angiogenesis Inhibitors/chemical synthesis , Benzoquinones/chemical synthesis , Quinazolines/chemical synthesis , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Animals , Benzoquinones/chemistry , Benzoquinones/pharmacology , Binding Sites , Cell Line , Female , Glutathione/chemistry , Humans , Kinetics , Mice , Mice, Nude , Models, Molecular , Molecular Conformation , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Quantum Theory , Quinazolines/chemistry , Quinazolines/pharmacology , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/chemistry , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xenograft Model Antitumor Assays
8.
Bioorg Med Chem Lett ; 15(21): 4731-5, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16143523

ABSTRACT

A novel series of inhibitors of cancer cell proliferation, selective against p21 cell cycle checkpoint-disrupted cells vs. cells with intact p21 checkpoint, were identified by high-throughput screening. Optimization of both ends of the lead molecule to improve potency, using parallel synthesis and iterative design, is described. The 2-(1,4-dibenzodioxane)-substituted derivative 14 was identified as a highly selective and potent agent displaying an IC50 of 91 nM in the p21-deficient cell line.


Subject(s)
Antineoplastic Agents/chemical synthesis , Pyrimidinones/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Inhibitory Concentration 50 , Pyrimidinones/pharmacology , Structure-Activity Relationship , Tubulin/drug effects
9.
Cancer Res ; 65(12): 5358-64, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-15958584

ABSTRACT

Src up-regulation is a common event in human cancers. In colorectal cancer, increased Src levels are an indicator of poor prognosis, and progression to metastatic disease is associated with substantial increases in Src activity. Therefore, we examined the activity of SKI-606, a potent inhibitor of Src and Abl kinases, against colon tumor lines in vitro and in s.c. tumor xenograft models. SKI-606 inhibited Src autophosphorylation with an IC(50) of approximately 0.25 micromol/L in HT29 cells. Phosphorylation of Tyr(925) of focal adhesion kinase, a Src substrate, was reduced by similar concentrations of inhibitor. Antiproliferative activity on plastic did not correlate with Src inhibition in either HT29 or Colo205 cells (IC(50)s, 1.5 and 2.5 micromol/L, respectively), although submicromolar concentrations of SKI-606 inhibited HT29 cell colony formation in soft agar. SKI-606 also caused loosely aggregated Colo205 spheroids to condense into compact spheroids. On oral administration to nude mice at the lowest efficacious dose, peak plasma concentrations of approximately 3 micromol/L, an oral bioavailability of 18%, and a t(1/2) of 8.6 hours were observed. SKI-606 was orally active in s.c. colon tumor xenograft models and caused substantial reductions in Src autophosphorylation on Tyr(418) in HT29 and Colo205 tumors. SKI-606 inhibited HT29 tumor growth on once daily administration, whereas twice daily administration was necessary to inhibit Colo205, HCT116, and DLD1 tumor growth. These results support development of SKI-606 as a therapeutic agent for treatment of colorectal cancer.


Subject(s)
Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Colonic Neoplasms/drug therapy , Nitriles/pharmacology , Protein Kinase Inhibitors/pharmacology , Quinolines/pharmacology , Administration, Oral , Aniline Compounds/pharmacokinetics , Animals , Antineoplastic Agents/pharmacokinetics , Colonic Neoplasms/enzymology , Colonic Neoplasms/metabolism , Female , HCT116 Cells , HT29 Cells , Humans , Mice , Mice, Nude , Nitriles/pharmacokinetics , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacokinetics , Quinolines/pharmacokinetics , Xenograft Model Antitumor Assays , src-Family Kinases/antagonists & inhibitors
10.
J Med Chem ; 48(4): 1107-31, 2005 Feb 24.
Article in English | MEDLINE | ID: mdl-15715478

ABSTRACT

A series of new 6,7-disubstituted-4-(arylamino)quinoline-3-carbonitrile derivatives that function as irreversible inhibitors of human epidermal growth factor receptor-2 (HER-2) and epidermal growth factor receptor (EGFR) kinases have been prepared. These compounds demonstrated enhanced activities for inhibiting HER-2 kinase and the growth of HER-2 positive cells compared to our EGFR kinase inhibitor 86 (EKB-569). Three synthetic routes were used to prepare these compounds. They were prepared mostly by acylation of 6-amino-4-(arylamino)quinoline-3-carbonitriles with unsaturated acid chlorides or by amination of 4-chloro-6-(crotonamido)quinoline-3-carbonitriles with monocyclic or bicyclic anilines. The third route was developed to prepare a key intermediate, 6-acetamido-4-chloroquinoline-3-carbonitrile, that involved a safer cyclization step. We show that attaching a large lipophilic group at the para position of the 4-(arylamino) ring results in improved potency for inhibiting HER-2 kinase. We also show the importance of a basic dialkylamino group at the end of the Michael acceptor for activity, due to intramolecular catalysis of the Michael addition. This, along with improved water solubility, resulted in compounds with enhanced biological properties. We present molecular modeling results consistent with the proposed mechanism of inhibition. Binding studies of one compound, 25o (C-14 radiolabeled), showed that it binds irreversibly to HER-2 protein in BT474 cells. Furthermore, it demonstrated excellent oral activity, especially in HER-2 overexpressing xenografts. Compound 25o (HKI-272) was selected for further studies and is currently in phase I clinical trials for the treatment of cancer.


Subject(s)
Antineoplastic Agents/chemical synthesis , Nitriles/chemical synthesis , Quinolines/chemical synthesis , Receptor, ErbB-2/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Female , Humans , Mice , Mice, Nude , Models, Molecular , Nitriles/chemistry , Nitriles/pharmacology , Phosphorylation , Protein Binding , Quinolines/chemistry , Quinolines/pharmacology , Radioligand Assay , Receptor, ErbB-2/metabolism , Structure-Activity Relationship , Transplantation, Heterologous
11.
Bioorg Med Chem Lett ; 14(21): 5317-22, 2004 Nov 01.
Article in English | MEDLINE | ID: mdl-15454219

ABSTRACT

Analogs of hemiasterlin (1) and HTI-286 (2), which contain various aromatic rings in the A segment, were synthesized as potential inhibitors of tubulin polymerization. The structure-activity relationships related to stereo- and regio-chemical effects of substituents on the aromatic ring in the A segment were studied. Analogs, which carry a meta-substituted phenyl ring in the A segment show comparable activity for inhibition of tubulin polymerization to 2, as well as in the cell proliferation assay using KB cells containing P-glycoprotein, compared to those of 1 and 2.


Subject(s)
Antineoplastic Agents/chemical synthesis , Oligopeptides/chemical synthesis , Tubulin Modulators , Tubulin/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biopolymers , Cell Proliferation/drug effects , Humans , KB Cells , Melanoma, Experimental/drug therapy , Mice , Mice, Nude , Oligopeptides/chemistry , Oligopeptides/pharmacology , Stereoisomerism , Structure-Activity Relationship , Xenograft Model Antitumor Assays
12.
J Med Chem ; 47(19): 4774-86, 2004 Sep 09.
Article in English | MEDLINE | ID: mdl-15341492

ABSTRACT

Hemiasterlin, a tripeptide isolated from marine sponges, induces microtubule depolymerization and mitotic arrest in cells. HTI-286, an analogue from an initial study of the hemiasterlins, is presently in clinical trials. In addition to its potent antitumor effects, 2 has the advantage of circumventing the P-glycoprotein-mediated resistance that hampers the efficacy of other antimicrotubule agents such as paclitaxel and vincristine in animal models. This paper describes an in-depth study of the structure--activity relationships of analogues of 2, their effects on microtubule polymerization, and their in vitro and in vivo anticancer activity. Regions of the molecule necessary for potent activity are identified. Groups tolerant of modification, leading to novel analogues, are reported. Potent analogues identified through in vivo studies in tumor xenograft models include one superior analogue, HTI-042.


Subject(s)
Microtubules/drug effects , Microtubules/metabolism , Oligopeptides/chemistry , Oligopeptides/pharmacology , Amines/chemistry , Animals , Cell Death/drug effects , Cell Division/drug effects , Cell Line , Cyclization , Esters/chemistry , Humans , Inhibitory Concentration 50 , Methylamines/chemical synthesis , Methylamines/chemistry , Mice , Microtubules/chemistry , Molecular Structure , Neoplasms/pathology , Oligopeptides/chemical synthesis , Oxidation-Reduction , Peptides/chemical synthesis , Peptides/chemistry , Pyruvic Acid/chemistry , Structure-Activity Relationship , Tubulin/metabolism
13.
Bioorg Med Chem Lett ; 14(16): 4329-32, 2004 Aug 16.
Article in English | MEDLINE | ID: mdl-15261296

ABSTRACT

Modifications of the B-segment of HTI-286 (2) produced a class of analogs incorporating heteroatom-substituents. The structure-activity relationship was studied. Analogs bearing methylsulfide and fluoride groups exhibited potency comparable to that of the parent compound HTI-286 and to paclitaxel in cytotoxicity assays against KB-3-1 cell lines. These analogs were more potent than paclitaxel against P-glycoprotein expressing KB-8-5 and KB-V1 cell lines. Several analogs showed strong inhibition of tubulin polymerization.


Subject(s)
Oligopeptides/chemistry , Tubulin Modulators , Cell Line , Humans , Melanoma/pathology , Oligopeptides/chemical synthesis , Oligopeptides/pharmacology , Structure-Activity Relationship , Transplantation, Heterologous
14.
Cancer Res ; 64(11): 3958-65, 2004 Jun 01.
Article in English | MEDLINE | ID: mdl-15173008

ABSTRACT

HER-2 belongs to the ErbB family of receptor tyrosine kinases, which has been implicated in a variety of cancers. Overexpression of HER-2 is seen in 25-30% of breast cancer patients and predicts a poor outcome in patients with primary disease. Trastuzumab (Herceptin), a monoclonal antibody to HER-2, is specifically approved for HER-2-positive breast cancer but is active only in a subset of these tumors. Blocking HER-2 function by a small molecule kinase inhibitor, therefore, represents an attractive alternate strategy to inhibit the growth of HER-2-positive tumors. HKI-272 is a potent inhibitor of HER-2 and is highly active against HER-2-overexpressing human breast cancer cell lines in vitro. It also inhibits the epidermal growth factor receptor (EGFR) kinase and the proliferation of EGFR-dependent cells. HKI-272 reduces HER-2 receptor autophosphorylation in cells at doses consistent with inhibition of cell proliferation and functions as an irreversible binding inhibitor, most likely by targeting a cysteine residue in the ATP-binding pocket of the receptor. In agreement with the predicted effects of HER-2 inactivation, HKI-272 treatment of cells results in inhibition of downstream signal transduction events and cell cycle regulatory pathways. This leads to arrest at the G(1)-S (Gap 1/DNA synthesis)-phase transition of the cell division cycle, ultimately resulting in decreased cell proliferation. In vivo, HKI-272 is active in HER-2- and EGFR-dependent tumor xenograft models when dosed orally on a once daily schedule. On the basis of its favorable preclinical pharmacological profile, HKI-272 has been selected as a candidate for additional development as an antitumor agent in breast and other HER-2-dependent cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Quinolines/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Administration, Oral , Animals , Cell Cycle/drug effects , Cell Division/drug effects , Cell Line, Tumor , ErbB Receptors/metabolism , Female , Humans , MAP Kinase Signaling System/physiology , Mice , Mice, Nude , Phosphorylation , Receptor, ErbB-2/metabolism , Xenograft Model Antitumor Assays
15.
Mol Cancer Ther ; 3(6): 755-62, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15210862

ABSTRACT

A high-throughput screen for Ras-mitogen-activated protein kinase (MAPK) signaling inhibitors identified two series (class 1 and 2) of substituted 4-anilino-3-quinolinecarbonitriles as potent (IC(50)s <10 nmol/L) mitogen-activated protein/extracellular signal-regulated kinase 1 (MEK1) kinase inhibitors. These compounds had cyanoquinoline cores, but differed in their respective aniline groups [1a, 1b: 4-phenoxyphenylaniline; 2a, 2b: 3-chloro-4-(1-methylimidazol-2-sulfanyl)aniline]. These compounds were competitive inhibitors of ATP binding by MEK1 kinase, and they had minimal or no effect on Raf, epidermal growth factor receptor (EGFR), Akt, cyclin-dependent kinase 4 (CDK4), or MK2 kinases at concentrations >100-fold higher than those that inhibited MEK1 kinase. Both class 1 and 2 compounds inhibited in vitro growth of human tumor cell lines. A class 2 compound (2b) was the most potent inhibitor of human tumor cell growth in vitro, and this effect was linked to distinct suppression of MAPK phosphorylation in cells. Compound 2b did not affect phosphorylation status of other kinases, such as EGFR, Akt, and stress-activated protein (SAP)/c-jun-NH kinase (Jnk); nor did it affect overall tyrosine phosphorylation level in cells. However, compound 2b did inhibit MEK1 phosphorylation in cells. Inhibition of MEK1 phosphorylation by 2b was not due to a major effect on Raf kinase activity, because enzyme assays showed minimal Raf kinase inhibition. We believe compound 2b inhibits kinase activity upstream of Raf, and thereby affects MEK1 phosphorylation in cells. Even with the dual effect of 2b on MEK and MAPK phosphorylation, this compound was well tolerated and significantly inhibited growth of the human colon tumor cell line LoVo (at 50 and 100 mg/kg BID, i.p.) in a nude mouse xenograft model.


Subject(s)
Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , MAP Kinase Kinase 1/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Aniline Compounds/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/classification , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/classification , Humans , Inhibitory Concentration 50 , Kinetics , MAP Kinase Kinase 1/metabolism , MAP Kinase Signaling System/drug effects , Mice , Mice, Nude , Nitriles/chemistry , Nitriles/pharmacology , Proto-Oncogene Proteins c-raf/antagonists & inhibitors , Proto-Oncogene Proteins c-raf/metabolism , Quinolines/chemistry , Quinolines/pharmacology , Sensitivity and Specificity , Structure-Activity Relationship , Xenograft Model Antitumor Assays
16.
Mol Cancer Ther ; 2(9): 873-84, 2003 Sep.
Article in English | MEDLINE | ID: mdl-14555706

ABSTRACT

The taxanes, paclitaxel (PTX) and docetaxel (DTX), belong to a novel class of anticancer drugs that stabilize microtubules and lead to tumor cell death. While both agents are widely used for the treatment of lung, breast, and ovarian cancer, many tumor types are refractory or develop resistance to these drugs. We describe here a novel analogue of DTX, designated MAC-321 [Microtubule/Apoptosis/Cytotoxic: 5beta, 20-epoxy-1, 2alpha-, 4-, 7beta-, 10beta-, 13alpha-hexahydroxytax-11-en-9-one 4 acetate 2 benzoate 7-propionate 13-ester with (2R,3S)-N-tertbutoxycarbonyl-3-(2-furyl)isoserine], that overcomes P-glycoprotein-mediated resistance to PTX and DTX in preclinical model systems. Similar to PTX or DTX, MAC-321 enhanced the rate of tubulin polymerization in vitro and caused the bundling of microtubules in cells. MAC-321 inhibited proliferation of a panel of 14 tumor cell lines with minimal variation in potency (IC(50) = 2.2 +/- 1.4 nM; range = 0.6-5.3 nM). Unlike PTX or DTX, the IC(50) of MAC-321 did not vary in cells that expressed low to moderate levels of P-glycoprotein. Even under extraordinary conditions in KB-V1 cells, which highly overexpress P-glycoprotein, resistance to MAC-321 was 80-fold compared with that of PTX (1400-fold) and DTX (670-fold). In addition, equivalent or less resistance to MAC-321 compared with PTX or DTX was observed in four cell lines that contain distinct point mutations within the taxane-binding site of beta-tubulin. Most importantly, MAC-321 displayed superior in vivo efficacy because: (a) MAC-321 either partially or completely inhibited tumor growth in three tumor models that overexpressed P-glycoprotein and were resistant to PTX; and (b) unlike PTX or DTX, MAC-321 was highly effective when given orally. MAC-321 was also highly effective when given as single i.v. dose. Our findings suggest that MAC-321, which is currently under clinical evaluation, may have broad therapeutic value.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Neoplasms, Experimental/pathology , Paclitaxel/pharmacology , Taxoids/pharmacology , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/metabolism , Administration, Oral , Animals , Cell Division/drug effects , Docetaxel , Female , Humans , Inhibitory Concentration 50 , Mice , Mice, Nude , Microtubules/drug effects , Neoplasms, Experimental/metabolism , Paclitaxel/analogs & derivatives , Tubulin/biosynthesis , Tubulin/drug effects , Tubulin/isolation & purification , Tumor Cells, Cultured
17.
Bioorg Med Chem Lett ; 13(18): 3031-4, 2003 Sep 15.
Article in English | MEDLINE | ID: mdl-12941327

ABSTRACT

4-[3-Chloro-4-(1-methyl-1H-imidazol-2-ylsulfanyl)]anilino-6,7-diethoxy-3-quinolinecarbonitrile (3) was identified as a MEK1 kinase inhibitor with exceptional activity against LoVo cells. The structure-activity relationships of the C-4 aniline substituents were explored, and water-solubilizing groups were added at the C-7 position to improve physical properties. Secondary cellular assays revealed that a compound possessing the appropriate aniline substituents inhibited MEK1 as well as MAPK phosphorylation, thereby acting as a dual inhibitor of the Ras-MAPK signaling cascade.


Subject(s)
Antineoplastic Agents/chemical synthesis , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Nitriles/chemical synthesis , Animals , Antineoplastic Agents/pharmacology , Cell Division/drug effects , Cell Line, Tumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , MAP Kinase Kinase 1 , Mice , Neoplasms, Experimental/drug therapy , Nitriles/pharmacology , Quinolines/chemical synthesis , Quinolines/pharmacology , Signal Transduction/drug effects , Structure-Activity Relationship , Transplantation, Heterologous , Treatment Outcome
18.
Cancer Res ; 63(8): 1838-45, 2003 Apr 15.
Article in English | MEDLINE | ID: mdl-12702571

ABSTRACT

Hemiasterlin is a natural product derived from marine sponges that, like other structurally diverse peptide-like molecules, binds to the Vinca-peptide site in tubulin, disrupts normal microtubule dynamics, and, at stoichiometric amounts, depolymerizes microtubules. Total synthesis of hemiasterlin and its analogues has been accomplished, and optimal pharmacological features of the series have been explored. The biological profile of one analogue, HTI-286, was studied here. HTI-286 inhibited the polymerization of purified tubulin, disrupted microtubule organization in cells, and induced mitotic arrest, as well as apoptosis. HTI-286 was a potent inhibitor of proliferation (mean IC(50) = 2.5 +/- 2.1 nM in 18 human tumor cell lines) and had substantially less interaction with multidrug resistance protein (P-glycoprotein) than currently used antimicrotubule agents, including paclitaxel, docetaxel, vinorelbine, or vinblastine. Resistance to HTI-286 was not detected in cells overexpressing the drug transporters MRP1 or MXR. In athymic mice implanted with human tumor xenografts, HTI-286 administered i.v. in saline inhibited the growth of numerous human tumors derived from carcinoma of the skin, breast, prostate, brain, and colon. Marked tumor regression was observed when used on established tumors that were >1 gram in size. Moreover, HTI-286 inhibited the growth of human tumor xenografts (e.g., HCT-15, DLD-1, MX-1W, and KB-8-5) where paclitaxel and vincristine were ineffective because of inherent or acquired resistance associated with P-glycoprotein. Efficacy was also achieved with p.o. administration of HTI-286. These data suggest that HTI-286 has excellent preclinical properties that may translate into superior clinical activity, as well as provide a useful synthetic reagent to probe the drug contact sites of peptide-like molecules that interact with tubulin.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/metabolism , Antineoplastic Agents/pharmacology , Microtubules/drug effects , Oligopeptides/pharmacology , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , Animals , Cattle , Cell Cycle/drug effects , Cell Division/drug effects , Drug Resistance, Neoplasm , Female , Humans , KB Cells , Mice , Mice, Nude , Microtubules/metabolism , Tubulin/metabolism , Xenograft Model Antitumor Assays
19.
J Med Chem ; 46(1): 49-63, 2003 Jan 02.
Article in English | MEDLINE | ID: mdl-12502359

ABSTRACT

A series of of 6,7-disubstituted-4-anilinoquinoline-3-carbonitrile derivatives that function as irreversible inhibitors of EGFR and HER-2 kinases have been prepared. These inhibitors have, at the 6-position, butynamide, crotonamide, and methacrylamide Michael acceptors bearing water-solublilizing substituents. These compounds were prepared by acylation of 6-amino-4-(arylamino)quinoline-3-carbonitriles with unsaturated acid chlorides or mixed anhydrides. We performed competitive reactivity studies showing that attaching a dialkylamino group onto the end of the Michael acceptor results in compounds with greater reactivity due to intramolecular catalysis of the Michael addition. This, along with improved water-solubility results in compounds with enhanced biological properties. We present molecular modeling results consistent with the proposed mechanism of inhibition. One compound, 5 (EKB-569), which shows excellent oral in vivo activity, was selected for further studies and is currently in phase I clinical trials for the treatment of cancer.


Subject(s)
Antineoplastic Agents/chemical synthesis , Enzyme Inhibitors/chemical synthesis , ErbB Receptors/antagonists & inhibitors , Organic Chemicals , Receptor, ErbB-2/antagonists & inhibitors , Administration, Oral , Aminoquinolines , Aniline Compounds , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Division/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , ErbB Receptors/metabolism , Glutathione/antagonists & inhibitors , Humans , Mice , Models, Molecular , Phosphorylation , Receptor, ErbB-2/metabolism , Structure-Activity Relationship , Substrate Specificity , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...