Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neuroanat ; 6: 40, 2012.
Article in English | MEDLINE | ID: mdl-23055955

ABSTRACT

The pigmented rat is an increasingly important model in visual neuroscience research, yet the lamination of retinal projections in the dLGN has not been examined in sufficient detail. From previous studies it was known that most of the rat dLGN receives monocular input from the contralateral eye, with a small island receiving predominantly ipsilateral projections. Here we revisit the question using cholera toxin B subunit, a tracer that efficiently fills retinal terminals after intra-ocular injection. We imaged retinal termini throughout the dLGN at 0.5 µm resolution and traced areas of ipsilateral and contralateral terminals to obtain a high resolution 3D reconstruction of the projection pattern. Retinal termini in the dLGN are well segregated by eye of origin, as expected. We find, however, that the ipsilateral projections form multiple discrete projection zones in three dimensions, not the single island previously described. It remains to be determined whether these subdomains represent distinct functional sublaminae, as is the case in other mammals.

2.
Ann N Y Acad Sci ; 1121: 216-31, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17872388

ABSTRACT

It has been proposed that long-term declarative memories are ultimately stored through interactions between the hippocampal memory system and the neocortical association areas that initially processed the to-be-stored information. One association neocortex, the orbitofrontal cortex (OFC) is strongly and reciprocally connected with the hippocampal memory system and plays an important role in odor recognition memory in rats. We will report data from two studies: one that examined the firing of neurons in a task dependent on the parahippocampal region (PHR; including the perirhinal, postrhinal, and entrorhinal cortices), and one examined the firing of OFC neurons performing a task that is presumably dependent on the hippocampus. In the first study, we examined the role of OFC neurons in the continuous odor-guided nonmatching to sample task. While the firing of neurons in the PHR and OFC are similar in this task, there are several notable differences that are consistent with the idea that OFC is a high-order association cortex which interacts extensively with the PHR to store declarative memories. In the second study, we characterized the firing patterns of neurons in the OFC rats performing a passive, 8-odor-sequence memory task. Most interesting were neurons that fired selectively in anticipation of specific odors. We found that hippocampal lesions abolished the anticipatory firing in OFC, suggesting that these anticipatory responses (memory) were in fact dependent on the hippocampus, further supporting the view that the OFC interacts with the hippocampal memory system to store long-term, declarative memories.


Subject(s)
Frontal Lobe/physiology , Hippocampus/physiology , Memory/physiology , Animals , Humans , Nerve Net , Neurons , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...