Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2402095, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924360

ABSTRACT

Integrated reference electrodes allow to deconvolute voltage contributions of anode and cathode and contribute to a better understanding of CO2 electrolyzers. However, in zero-gap cell configurations, this integration can be challenging and obtaining error-free data with such a setup is a non-trivial task. This study compares five different methods to integrate a reference electrode into an alkaline zero-gap CO2 electrolysis cell. Sources of error and measures to circumvent them are investigated and finite-element simulation is used to gain a better understanding of observed effects. Placing a reference electrode into the inactive area of the cell is found to be a reliable method, as long as the placement of electrodes is sufficiently controlled. Sandwiching a wire quasi-reference electrode between two membranes is especially useful for electrochemical impedance spectroscopy; however, it can affect the overall cell performance. Contacting the catalyst layer from the backside with a salt-bridge is promising for localized measurements if sufficient reproducibility can be ensured.

2.
RSC Adv ; 13(27): 18916-18926, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37350859

ABSTRACT

In this study Ag nanoparticles supported on carbon black (Ag/C) were studied as catalysts for the electrochemical reduction of CO2 to CO. The nanoparticles were synthesized on three carbon supports, namely Super P, Vulcan and Ketjenblack with surface areas from 50 to 800 m2 g-1 using cysteamine as a linker as proposed by Kim et al., J. Am. Chem. Soc., 2015, 137, 13844. Gas diffusion electrodes were fabricated with all three Ag/Cs and then characterized in a zero-gap electrolyzer. All three supported catalysts achieve high voltage efficiencies, mass activities, and faradaic efficiencies above 80% up to 200 mA cm-2 with Ag loadings of ∼0.07 mg cm-2. Using an IrO2 anode, a partial CO current density of 196 mA cm-2 at 2.95 V and a mass activity of 3920 mA mg-1 at a cell voltage of 3.2 V was achieved. When changing the electrolyte from 0.1 M KOH to 0.1 M CsOH, it is possible to achieve 90% FECO at 300 mA cm-2. This results in a mass activity up to 5400 mA mg-1. Moreover, long-term tests at 300 mA cm-2 with 0.1 M CsOH resulted in FECO remaining above 80% over 11 h. The electrochemical performance did not show a dependence on the carbon support, indicating that mass transport is limiting the cathode, rather than catalyst kinetics. It is worth noting that this may only apply to electrodes with PTFE binders as used in this study, and electrodes with ionomer binders may show a dependence on the catalyst support.

3.
Nat Commun ; 13(1): 6099, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36243867

ABSTRACT

The electrochemical reduction of CO2 is a pivotal technology for the defossilization of the chemical industry. Although pilot-scale electrolyzers exist, water management and salt precipitation remain a major hurdle to long-term operation. In this work, we present high-resolution neutron imaging (6 µm) of a zero-gap CO2 electrolyzer to uncover water distribution and salt precipitation under application-relevant operating conditions (200 mA cm-2 at a cell voltage of 2.8 V with a Faraday efficiency for CO of 99%). Precipitated salts penetrating the cathode gas diffusion layer can be observed, which are believed to block the CO2 gas transport and are therefore the major cause for the commonly observed decay in Faraday efficiency. Neutron imaging further shows higher salt accumulation under the cathode channel of the flow field compared to the land.

4.
RSC Adv ; 12(32): 20778-20784, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35919174

ABSTRACT

Dry cathode operation is a desired operation mode in anion-exchange membrane water electrolyzers to minimize contamination of the generated hydrogen. However, water management under such operation conditions makes it challenging to maintain reliable performance and durability. Here, we utilize high-resolution in situ neutron imaging (∼6 µm effective resolution) to analyze the water content inside the membrane-electrode-assembly of an anion-exchange membrane water electrolyzer. The ion-exchange capacity (IEC) and thus hydrophilicity of the polymer binder in the cathode catalyst layer is varied to study the influence on water content in the anode (mid IEC, 1.8-2.2 meq. g-1 and high IEC, 2.3-2.6 meq. g-1). The neutron radiographies show that a higher ion-exchange capacity binder allows improved water retention, which reduces the drying-out of the cathode at high current densities. Electrochemical measurements confirm a generally better efficiency for a high IEC cell above 600 mA cm-2. At 1.5 A cm-2 the high IEC has a 100 mV lower overpotential (2.1 V vs. 2.2 V) and a lower high frequency resistance (210 mΩ cm-2 vs. 255 mΩ cm-2), which is believed to be linked to the improved cathode water retention and membrane humidification. As a consequence, the performance stability of the high IEC cell at 1 A cm-2 is also significantly better than that of the mid IEC cell (45 mV h-1 vs. 75 mV h-1).

SELECTION OF CITATIONS
SEARCH DETAIL
...