Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 30(22): 127531, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32890685

ABSTRACT

Previous studies have identified a series of imidazo[1,2-a]pyridine (IZP) derivatives as potent allosteric inhibitors of HIV-1 integrase (ALLINIs) and virus infection in cell culture. However, IZPs were also found to be relatively potent activators of the pregnane-X receptor (PXR), raising the specter of induction of CYP-mediated drug disposition pathways. In an attempt to modify PXR activity without affecting anti-HIV-1 activity, rational structure-based design and modeling approaches were used. An X-ray cocrystal structure of (S,S)-1 in the PXR ligand binding domain (LBD) allowed an examination of the potential of rational structural modifications designed to abrogate PXR. The introduction of bulky basic amines at the C-8 position provided macrocyclic IZP derivatives that displayed potent HIV-1 inhibitory activity in cell culture with no detectable PXR transactivation at the highest concentration tested.


Subject(s)
Anti-HIV Agents/pharmacology , HIV Integrase Inhibitors/pharmacology , HIV-1/drug effects , Macrocyclic Compounds/pharmacology , Pregnane X Receptor/antagonists & inhibitors , Allosteric Regulation/drug effects , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Cells, Cultured , Dose-Response Relationship, Drug , HIV Integrase Inhibitors/chemical synthesis , HIV Integrase Inhibitors/chemistry , Humans , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Microbial Sensitivity Tests , Molecular Structure , Pregnane X Receptor/metabolism , Structure-Activity Relationship , Virus Replication/drug effects
2.
Bioorg Med Chem Lett ; 30(21): 127516, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32860982

ABSTRACT

The design, synthesis and structure-activity relationships associated with a series of C2-substituted pyrazolopyrimidines as potent allosteric inhibitors of HIV-1 integrase (ALLINIs) are described. Structural modifications to these molecules were made in order to examine the effect on potency and, for select compounds, pharmacokinetic properties. We examined a variety of C2-substituted pyrazolopyrimidines and found that the C2-amide derivatives demonstrated the most potent antiviral activity of this class against HIV-1 infection in cell culture.


Subject(s)
Amides/pharmacology , Anti-HIV Agents/pharmacology , HIV Integrase Inhibitors/pharmacology , HIV Integrase/metabolism , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Allosteric Regulation/drug effects , Amides/chemical synthesis , Amides/chemistry , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Cells, Cultured , Dose-Response Relationship, Drug , Drug Design , HIV Integrase Inhibitors/chemical synthesis , HIV Integrase Inhibitors/chemistry , HIV-1/drug effects , HIV-1/metabolism , Humans , Microbial Sensitivity Tests , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
3.
J Med Chem ; 63(5): 2620-2637, 2020 03 12.
Article in English | MEDLINE | ID: mdl-32081010

ABSTRACT

The standard of care for HIV-1 infection, highly active antiretroviral therapy (HAART), combines two or more drugs from at least two classes. Even with the success of HAART, new drugs with novel mechanisms are needed to combat viral resistance, improve adherence, and mitigate toxicities. Active site inhibitors of HIV-1 integrase are clinically validated for the treatment of HIV-1 infection. Here we describe allosteric inhibitors of HIV-1 integrase that bind to the LEDGF/p75 interaction site and disrupt the structure of the integrase multimer that is required for the HIV-1 maturation. A series of pyrazolopyrimidine-based inhibitors was developed with a vector in the 2-position that was optimized by structure-guided compound design. This resulted in the discovery of pyrazolopyrimidine 3, which was optimized at the 2- and 7-positions to afford 26 and 29 as potent allosteric inhibitors of HIV-1 integrase that exhibited low nanomolar antiviral potency in cell culture and encouraging PK properties.


Subject(s)
Allosteric Regulation/drug effects , HIV Integrase Inhibitors/chemistry , HIV Integrase Inhibitors/pharmacology , HIV-1/drug effects , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Administration, Oral , Animals , Drug Discovery , HIV Infections/drug therapy , HIV Infections/virology , HIV Integrase/metabolism , HIV Integrase Inhibitors/administration & dosage , HIV Integrase Inhibitors/pharmacokinetics , Humans , Male , Molecular Docking Simulation , Pyrazoles/administration & dosage , Pyrazoles/pharmacokinetics , Pyridines/administration & dosage , Pyridines/pharmacokinetics , Rats, Sprague-Dawley
4.
Proc Natl Acad Sci U S A ; 108(37): 15366-71, 2011 Sep 13.
Article in English | MEDLINE | ID: mdl-21896751

ABSTRACT

Influenza nucleoprotein (NP) plays multiple roles in the virus life cycle, including an essential function in viral replication as an integral component of the ribonucleoprotein complex, associating with viral RNA and polymerase within the viral core. The multifunctional nature of NP makes it an attractive target for antiviral intervention, and inhibitors targeting this protein have recently been reported. In a parallel effort, we discovered a structurally similar series of influenza replication inhibitors and show that they interfere with NP-dependent processes via formation of higher-order NP oligomers. Support for this unique mechanism is provided by site-directed mutagenesis studies, biophysical characterization of the oligomeric ligand:NP complex, and an X-ray cocrystal structure of an NP dimer of trimers (or hexamer) comprising three NP_A:NP_B dimeric subunits. Each NP_A:NP_B dimeric subunit contains two ligands that bridge two composite, protein-spanning binding sites in an antiparallel orientation to form a stable quaternary complex. Optimization of the initial screening hit produced an analog that protects mice from influenza-induced weight loss and mortality by reducing viral titers to undetectable levels throughout the course of treatment.


Subject(s)
Antiviral Agents/pharmacology , Nucleoproteins/chemistry , Nucleoproteins/metabolism , Orthomyxoviridae/physiology , Small Molecule Libraries/pharmacology , Virus Replication/drug effects , Animals , Antiviral Agents/therapeutic use , Crystallography, X-Ray , Disease Models, Animal , High-Throughput Screening Assays , Hydrodynamics , Mice , Models, Molecular , Nucleoproteins/ultrastructure , Orthomyxoviridae/drug effects , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Protein Multimerization/drug effects , Protein Structure, Quaternary , Small Molecule Libraries/therapeutic use , Solutions
5.
Antimicrob Agents Chemother ; 48(10): 3697-701, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15388422

ABSTRACT

Nocathiacins are cyclic thiazolyl peptides with inhibitory activity against gram-positive bacteria. BMS-249524 (nocathiacin I), identified from screening a library of compounds against a multiply antibiotic-resistant Enterococcus faecium strain, was used as a lead chemotype to obtain additional structurally related compounds. The MIC assay results of BMS-249524 and two more water-soluble derivatives, BMS-411886 and BMS-461996, revealed potent in vitro activities against a variety of gram-positive pathogens including methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae, vancomycin intermediate-resistant S. aureus, vancomycin-resistant enterococci, Mycobacterium tuberculosis and Mycobacterium avium. Analysis of killing kinetics revealed that these compounds are bactericidal for S. aureus with at least a 3-log(10) reduction of bacterial growth within 6 h of exposure to four times the MICs. Nocathiacin-resistant mutants were characterized by DNA sequence analyses. The mutations mapped to the rplK gene encoding the L11 ribosomal protein in the 50S subunit in a region previously shown to be involved in the binding of related thiazolyl peptide antibiotics. These compounds demonstrated potential for further development as a new class of antibacterial agents with activity against key antibiotic-resistant gram-positive bacterial pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Peptides, Cyclic/pharmacology , Thiazoles/pharmacology , Bacteria/genetics , Bacteria, Anaerobic/drug effects , DNA Mutational Analysis , Kinetics , Microbial Sensitivity Tests , Models, Molecular , Mycobacterium/drug effects , Vancomycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...