Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Genet Med ; 26(6): 101119, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38465576

ABSTRACT

PURPOSE: Fem1 homolog B (FEM1B) acts as a substrate recognition subunit for ubiquitin ligase complexes belonging to the CULLIN 2-based E3 family. Several biological functions have been proposed for FEM1B, including a structurally resolved function as a sensor for redox cell status by controlling mitochondrial activity, but its implication in human disease remains elusive. METHODS: To understand the involvement of FEM1B in human disease, we made use of Matchmaker exchange platforms to identify individuals with de novo variants in FEM1B and performed their clinical evaluation. We performed functional validation using primary neuronal cultures and in utero electroporation assays, as well as experiments on patient's cells. RESULTS: Five individuals with a recurrent de novo missense variant in FEM1B were identified: NM_015322.5:c.377G>A NP_056137.1:p.(Arg126Gln) (FEM1BR126Q). Affected individuals shared a severe neurodevelopmental disorder with behavioral phenotypes and a variable set of malformations, including brain anomalies, clubfeet, skeletal abnormalities, and facial dysmorphism. Overexpression of the FEM1BR126Q variant but not FEM1B wild-type protein, during mouse brain development, resulted in delayed neuronal migration of the target cells. In addition, the individuals' cells exhibited signs of oxidative stress and induction of type I interferon signaling. CONCLUSION: Overall, our data indicate that p.(Arg126Gln) induces aberrant FEM1B activation, resulting in a gain-of-function mechanism associated with a severe syndromic developmental disorder in humans.

2.
Hum Genet ; 141(12): 1837-1848, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35637341

ABSTRACT

Angelman syndrome is a rare neurodevelopmental disorder caused by mutations affecting the chromosomal 15q11-13 region, either by contiguous gene deletions, imprinting defects, uniparental disomy, or mutations in the UBE3A gene itself. Phenotypic abnormalities are driven primarily, but not exclusively (especially in 15q11-13 deletion cases) by loss of expression of the maternally inherited UBE3A gene expression. The disorder was first described in 1965 by the English pediatrician Harry Angelman. Since that first description of three children with Angelman syndrome, there has been extensive research into the genetic, molecular and phenotypic aspects of the disorder. In the last decade, this has resulted in over 100 publications per year. Collectively, this research has led the field to a pivotal point in which restoring UBE3A function by genetic therapies is currently explored in several clinical trials. In this study, we employed a bibliometric approach to review and visualize the development of Angelman syndrome research over the last 50 years. We look into different parameters shaping the progress of the Angelman syndrome research field, including source of funding, publishing journals and international collaborations between research groups. Using a network approach, we map the focus of the research field and how that shifted over time. This overview helps understand the shift of research focus in the field and can provide a comprehensive handbook of Angelman syndrome research development.


Subject(s)
Angelman Syndrome , Child , Humans , Angelman Syndrome/genetics , Angelman Syndrome/therapy , Ubiquitin-Protein Ligases/genetics , Mutation , Bibliometrics , Chromosomes, Human, Pair 15
3.
Mol Psychiatry ; 27(5): 2590-2601, 2022 05.
Article in English | MEDLINE | ID: mdl-35264729

ABSTRACT

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of neuronal E3 ligase UBE3A. Restoring UBE3A levels is a potential disease-modifying therapy for AS and has recently entered clinical trials. There is paucity of data regarding the molecular changes downstream of UBE3A hampering elucidation of disease therapeutics and biomarkers. Notably, UBE3A plays an important role in the nucleus but its targets have yet to be elucidated. Using proteomics, we assessed changes during postnatal cortical development in an AS mouse model. Pathway analysis revealed dysregulation of proteasomal and tRNA synthetase pathways at all postnatal brain developmental stages, while synaptic proteins were altered in adults. We confirmed pathway alterations in an adult AS rat model across multiple brain regions and highlighted region-specific differences. UBE3A reinstatement in AS model mice resulted in near complete and partial rescue of the proteome alterations in adolescence and adults, respectively, supporting the notion that restoration of UBE3A expression provides a promising therapeutic option. We show that the nuclear enriched transketolase (TKT), one of the most abundantly altered proteins, is a novel direct UBE3A substrate and is elevated in the neuronal nucleus of rat brains and human iPSC-derived neurons. Taken together, our study provides a comprehensive map of UBE3A-driven proteome remodeling in AS across development and species, and corroborates an early UBE3A reinstatement as a viable therapeutic option. To support future disease and biomarker research, we present an accessible large-scale multi-species proteomic resource for the AS community ( https://www.angelman-proteome-project.org/ ).


Subject(s)
Angelman Syndrome , Proteomics , Angelman Syndrome/drug therapy , Angelman Syndrome/genetics , Angelman Syndrome/metabolism , Animals , Disease Models, Animal , Mice , Proteome , Rats , Signal Transduction , Ubiquitin-Protein Ligases/genetics
4.
Int J Mol Sci ; 24(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36613751

ABSTRACT

Angelman Syndrome (AS) is a severe neurodevelopmental disorder, caused by the neuronal absence of the ubiquitin protein ligase E3A (UBE3A). UBE3A promotes ubiquitin-mediated protein degradation and functions as a transcriptional coregulator of nuclear hormone receptors, including the glucocorticoid receptor (GR). Previous studies showed anxiety-like behavior and hippocampal-dependent memory disturbances in AS mouse models. Hippocampal GR is an important regulator of the stress response and memory formation, and we therefore investigated whether the absence of UBE3A in AS mice disrupted GR signaling in the hippocampus. We first established a strong cortisol-dependent interaction between the GR ligand binding domain and a UBE3A nuclear receptor box in a high-throughput interaction screen. In vivo, we found that UBE3A-deficient AS mice displayed significantly more variation in circulating corticosterone levels throughout the day compared to wildtypes (WT), with low to undetectable levels of corticosterone at the trough of the circadian cycle. Additionally, we observed an enhanced transcriptomic response in the AS hippocampus following acute corticosterone treatment. Surprisingly, chronic corticosterone treatment showed less contrast between AS and WT mice in the hippocampus and liver transcriptomic responses. This suggests that UBE3A limits the acute stimulation of GR signaling, likely as a member of the GR transcriptional complex. Altogether, these data indicate that AS mice are more sensitive to acute glucocorticoid exposure in the brain compared to WT mice. This suggests that stress responsiveness is altered in AS which could lead to anxiety symptoms.


Subject(s)
Angelman Syndrome , Mice , Animals , Angelman Syndrome/genetics , Angelman Syndrome/metabolism , Corticosterone/metabolism , Hippocampus/metabolism , Brain/metabolism , Neurons/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Ubiquitin-Protein Ligases/metabolism , Disease Models, Animal
5.
Cell Rep Med ; 2(8): 100360, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34467244

ABSTRACT

Angelman syndrome (AS) is a neurodevelopmental disorder caused by the loss of maternal UBE3A, a ubiquitin protein ligase E3A. Here, we study neurons derived from patients with AS and neurotypical individuals, and reciprocally modulate UBE3A using antisense oligonucleotides. Unbiased proteomics reveal proteins that are regulated by UBE3A in a disease-specific manner, including PEG10, a retrotransposon-derived GAG protein. PEG10 protein increase, but not RNA, is dependent on UBE3A and proteasome function. PEG10 binds to both RNA and ataxia-associated proteins (ATXN2 and ATXN10), localizes to stress granules, and is secreted in extracellular vesicles, modulating vesicle content. Rescue of AS patient-derived neurons by UBE3A reinstatement or PEG10 reduction reveals similarity in transcriptome changes. Overexpression of PEG10 during mouse brain development alters neuronal migration, suggesting that it can affect brain development. These findings imply that PEG10 is a secreted human UBE3A target involved in AS pathophysiology.


Subject(s)
Angelman Syndrome/metabolism , Angelman Syndrome/physiopathology , Apoptosis Regulatory Proteins/metabolism , DNA-Binding Proteins/metabolism , Gene Products, gag/chemistry , RNA-Binding Proteins/metabolism , Retroviridae/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Movement , Child, Preschool , Extracellular Vesicles/metabolism , Extracellular Vesicles/ultrastructure , Female , Humans , Induced Pluripotent Stem Cells/pathology , Male , Mice, Inbred C57BL , Neurons/metabolism , Neurons/pathology , Proteasome Endopeptidase Complex/metabolism , Protein Domains , Retroelements/genetics , Stress Granules/metabolism , Stress Granules/ultrastructure , Transcriptome/genetics
6.
Sci Rep ; 11(1): 3007, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542309

ABSTRACT

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by brain-specific loss of UBE3A, an E3 ubiquitin protein ligase. A substantial number of possible ubiquitination targets of UBE3A have been identified, although evidence of being direct UBE3A substrates is often lacking. Here we identified the synaptic protein Rabphilin-3a (RPH3A), an effector of the RAB3A small GTPase involved in axonal vesicle priming and docking, as a ubiquitination target of UBE3A. We found that the UBE3A and RAB3A binding sites on RPH3A partially overlap, and that RAB3A binding to RPH3A interferes with UBE3A binding. We confirmed previous observations that RPH3A levels are critically dependent on RAB3A binding but, rather surprisingly, we found that the reduced RPH3A levels in the absence of RAB3A are not mediated by UBE3A. Indeed, while we found that RPH3A is ubiquitinated in a UBE3A-dependent manner in mouse brain, UBE3A mono-ubiquitinates RPH3A and does not facilitate RPH3A degradation. Moreover, we found that an AS-linked UBE3A missense mutation in the UBE3A region that interacts with RPH3A, abrogates the interaction with RPH3A. In conclusion, our results identify RPH3A as a novel target of UBE3A and suggest that UBE3A-dependent ubiquitination of RPH3A serves a non-degradative function.

7.
Hum Mutat ; 42(4): 445-459, 2021 04.
Article in English | MEDLINE | ID: mdl-33565190

ABSTRACT

Thousand and one amino-acid kinase 1 (TAOK1) is a MAP3K protein kinase, regulating different mitogen-activated protein kinase pathways, thereby modulating a multitude of processes in the cell. Given the recent finding of TAOK1 involvement in neurodevelopmental disorders (NDDs), we investigated the role of TAOK1 in neuronal function and collected a cohort of 23 individuals with mostly de novo variants in TAOK1 to further define the associated NDD. Here, we provide evidence for an important role for TAOK1 in neuronal function, showing that altered TAOK1 expression levels in the embryonic mouse brain affect neural migration in vivo, as well as neuronal maturation in vitro. The molecular spectrum of the identified TAOK1 variants comprises largely truncating and nonsense variants, but also missense variants, for which we provide evidence that they can have a loss of function or dominant-negative effect on TAOK1, expanding the potential underlying causative mechanisms resulting in NDD. Taken together, our data indicate that TAOK1 activity needs to be properly controlled for normal neuronal function and that TAOK1 dysregulation leads to a neurodevelopmental disorder mainly comprising similar facial features, developmental delay/intellectual disability and/or variable learning or behavioral problems, muscular hypotonia, infant feeding difficulties, and growth problems.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Amino Acids , Animals , Humans , Intellectual Disability/genetics , MAP Kinase Signaling System , Mice , Muscle Hypotonia , Neurodevelopmental Disorders/genetics
8.
Hum Mol Genet ; 30(6): 430-442, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33607653

ABSTRACT

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by deletion (~75%) or mutation (~10%) of the ubiquitin E3 ligase A (UBE3A) gene, which encodes a HECT type E3 ubiquitin protein ligase. Although the critical substrates of UBE3A are unknown, previous studies have suggested a critical role of nuclear UBE3A in AS pathophysiology. Here, we investigated to what extent UBE3A missense mutations disrupt UBE3A subcellular localization as well as catalytic activity, stability and protein folding. Our functional screen of 31 UBE3A missense mutants revealed that UBE3A mislocalization is the predominant cause of UBE3A dysfunction, accounting for 55% of the UBE3A mutations tested. The second major cause (29%) is a loss of E3-ubiquitin ligase activity, as assessed in an Escherichia coli in vivo ubiquitination assay. Mutations affecting catalytic activity are found not only in the catalytic HECT domain, but also in the N-terminal half of UBE3A, suggesting an important contribution of this N-terminal region to its catalytic potential. Together, our results show that loss of nuclear UBE3A E3 ligase activity is the predominant cause of UBE3A-linked AS. Moreover, our functional analysis screen allows rapid assessment of the pathogenicity of novel UBE3A missense variants which will be of particular importance when treatments for AS become available.


Subject(s)
Angelman Syndrome/pathology , Cell Nucleus/metabolism , Mutation, Missense , Neurons/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Angelman Syndrome/genetics , Animals , Escherichia coli/metabolism , HEK293 Cells , Humans , Mice , Saccharomyces cerevisiae/metabolism , Ubiquitin-Protein Ligases/chemistry
9.
Hum Mol Genet ; 29(18): 3032-3043, 2020 11 04.
Article in English | MEDLINE | ID: mdl-32879944

ABSTRACT

The human UBE3A gene, which is essential for normal neurodevelopment, encodes three Ubiquitin E3 ligase A (UBE3A) protein isoforms. However, the subcellular localization and relative abundance of these human UBE3A isoforms are unknown. We found, as previously reported in mice, that UBE3A is predominantly nuclear in human neurons. However, this conserved subcellular distribution is achieved by strikingly distinct cis-acting mechanisms. A single amino-acid deletion in the N-terminus of human hUBE3A-Iso3, which is homologous to cytosolic mouse mUBE3A-Iso2, results in its translocation to the nucleus. This singe amino-acid deletion is shared with apes and Old World monkeys and was preceded by the appearance of the cytosolic hUBE3A-Iso2 isoform. This hUBE3A-Iso2 isoform arose after the lineage of New World monkeys and Old World monkeys separated from the Tarsiers (Tarsiidae). Due to the loss of a single nucleotide in a non-coding exon, this exon became in frame with the remainder of the UBE3A protein. RNA-seq analysis of human brain samples showed that the human UBE3A isoforms arise by alternative splicing. Consistent with the predominant nuclear enrichment of UBE3A in human neurons, the two nuclear-localized isoforms, hUBE3A-Iso1 and -Iso3, are the most abundantly expressed isoforms of UBE3A, while hUBE3A-Iso2 maintains a small pool of cytosolic UBE3A. Our findings provide new insight into UBE3A localization and evolution and may have important implications for gene therapy approaches in Angelman syndrome.


Subject(s)
Angelman Syndrome/genetics , Neurons/metabolism , Ubiquitin-Protein Ligases/genetics , Alternative Splicing/genetics , Angelman Syndrome/pathology , Animals , Brain/metabolism , Brain/pathology , Genomic Imprinting/genetics , Humans , Mice , Neurons/pathology , Protein Isoforms/genetics
10.
Mol Genet Genomic Med ; 8(11): e1481, 2020 11.
Article in English | MEDLINE | ID: mdl-32889787

ABSTRACT

BACKGROUND: Loss of functional UBE3A, an E3 protein ubiquitin ligase, causes Angelman syndrome (AS), a neurodevelopmental disorder characterized by severe developmental delay, speech impairment, epilepsy, movement or balance disorder, and a characteristic behavioral pattern. We identified a novel UBE3A sequence variant in a large family with eight affected individuals, who did not meet the clinical AS criteria. METHODS: Detailed clinical examination and genetic analysis was performed to establish the phenotypic diversity and the genetic cause. The function of the mutant UBE3A protein was assessed with respect to its subcellular localization, stability, and E3 ubiquitin ligase activity. RESULTS: All eight affected individuals showed the presence of a novel maternally inherited UBE3A sequence variant (NM_130838.4(UBE3A):c.1018-1020del, p.(Asn340del), which is in line with a genetic AS diagnosis. Although they presented with moderate to severe intellectual disability, the phenotype did not match the clinical criteria for AS. In line with this, functional analysis of the UBE3A p.Asn340del mutant protein revealed no major deficits in UBE3A protein localization, stability, or E3 ubiquitin ligase activity. CONCLUSION: The p.(Asn340del) mutant protein behaves distinctly different from previously described AS-linked missense mutations in UBE3A, and causes a phenotype that is markedly different from AS. This study further extends the range of phenotypes that are associated with UBE3A loss, duplication, or mutation.


Subject(s)
Angelman Syndrome/genetics , Developmental Disabilities/genetics , Gene Deletion , Phenotype , Ubiquitin-Protein Ligases/genetics , Adult , Angelman Syndrome/diagnosis , Animals , Developmental Disabilities/diagnosis , Diagnosis, Differential , Enzyme Stability , Female , HEK293 Cells , Humans , Male , Mice , Pedigree , Protein Transport , Ubiquitin-Protein Ligases/metabolism
11.
Nat Neurosci ; 22(8): 1235-1247, 2019 08.
Article in English | MEDLINE | ID: mdl-31235931

ABSTRACT

Mutations affecting the gene encoding the ubiquitin ligase UBE3A cause Angelman syndrome. Although most studies focus on the synaptic function of UBE3A, we show that UBE3A is highly enriched in the nucleus of mouse and human neurons. We found that the two major isoforms of UBE3A exhibit highly distinct nuclear versus cytoplasmic subcellular localization. Both isoforms undergo nuclear import through direct binding to PSMD4 (also known as S5A or RPN10), but the amino terminus of the cytoplasmic isoform prevents nuclear retention. Mice lacking the nuclear UBE3A isoform recapitulate the behavioral and electrophysiological phenotypes of Ube3am-/p+ mice, whereas mice harboring a targeted deletion of the cytosolic isoform are unaffected. Finally, we identified Angelman syndrome-associated UBE3A missense mutations that interfere with either nuclear targeting or nuclear retention of UBE3A. Taken together, our findings elucidate the mechanisms underlying the subcellular localization of UBE3A, and indicate that the nuclear UBE3A isoform is the most critical for the pathophysiology of Angelman syndrome.


Subject(s)
Angelman Syndrome/genetics , Angelman Syndrome/psychology , Behavior, Animal , Ubiquitin-Protein Ligases/genetics , Animals , Carrier Proteins/metabolism , Cell Nucleus/enzymology , Cell Nucleus/genetics , Cytosol/enzymology , Electrophysiological Phenomena/genetics , Female , Humans , Isoenzymes/genetics , Male , Mice , Mice, Knockout , Mutation, Missense/genetics , Nesting Behavior , Neurons/enzymology , Psychomotor Performance , RNA-Binding Proteins , Swimming/psychology , Zinc Fingers
12.
Mol Psychiatry ; 24(5): 757-771, 2019 05.
Article in English | MEDLINE | ID: mdl-29302076

ABSTRACT

Schizophrenia is highly heritable, yet its underlying pathophysiology remains largely unknown. Among the most well-replicated findings in neurobiological studies of schizophrenia are deficits in myelination and white matter integrity; however, direct etiological genetic and cellular evidence has thus far been lacking. Here, we implement a family-based approach for genetic discovery in schizophrenia combined with functional analysis using induced pluripotent stem cells (iPSCs). We observed familial segregation of two rare missense mutations in Chondroitin Sulfate Proteoglycan 4 (CSPG4) (c.391G > A [p.A131T], MAF 7.79 × 10-5 and c.2702T > G [p.V901G], MAF 2.51 × 10-3). The CSPG4A131T mutation was absent from the Swedish Schizophrenia Exome Sequencing Study (2536 cases, 2543 controls), while the CSPG4V901G mutation was nominally enriched in cases (11 cases vs. 3 controls, P = 0.026, OR 3.77, 95% CI 1.05-13.52). CSPG4/NG2 is a hallmark protein of oligodendrocyte progenitor cells (OPCs). iPSC-derived OPCs from CSPG4A131T mutation carriers exhibited abnormal post-translational processing (P = 0.029), subcellular localization of mutant NG2 (P = 0.007), as well as aberrant cellular morphology (P = 3.0 × 10-8), viability (P = 8.9 × 10-7), and myelination potential (P = 0.038). Moreover, transfection of healthy non-carrier sibling OPCs confirmed a pathogenic effect on cell survival of both the CSPG4A131T (P = 0.006) and CSPG4V901G (P = 3.4 × 10-4) mutations. Finally, in vivo diffusion tensor imaging of CSPG4A131T mutation carriers demonstrated a reduction of brain white matter integrity compared to unaffected sibling and matched general population controls (P = 2.2 × 10-5). Together, our findings provide a convergence of genetic and functional evidence to implicate OPC dysfunction as a candidate pathophysiological mechanism of familial schizophrenia.


Subject(s)
Chondroitin Sulfate Proteoglycans/genetics , Membrane Proteins/genetics , Oligodendrocyte Precursor Cells/metabolism , Schizophrenia/genetics , Adult , Antigens/genetics , Cell Differentiation/physiology , Chondroitin Sulfate Proteoglycans/metabolism , Diffusion Tensor Imaging , Family , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Membrane Proteins/metabolism , Mutation/genetics , Oligodendrocyte Precursor Cells/physiology , Oligodendroglia/metabolism , Pedigree , Proteoglycans/genetics , Schizophrenia/metabolism , White Matter/metabolism
13.
Cell Mol Life Sci ; 75(17): 3121-3141, 2018 09.
Article in English | MEDLINE | ID: mdl-29858610

ABSTRACT

Ubiquitination, the covalent attachment of ubiquitin to proteins, by E3 ligases of the HECT (homologous to E6AP C terminus) family is critical in controlling diverse physiological pathways. Stringent control of HECT E3 ligase activity and substrate specificity is essential for cellular health, whereas deregulation of HECT E3s plays a prominent role in disease. The cell employs a wide variety of regulatory mechanisms to control HECT E3 activity and substrate specificity. Here, we summarize the current understanding of these regulatory mechanisms that control HECT E3 function. Substrate specificity is generally determined by interactions of adaptor proteins with domains in the N-terminal extensions of HECT E3 ligases. These N-terminal domains have also been found to interact with the HECT domain, resulting in the formation of inhibitory conformations. In addition, catalytic activity of the HECT domain is commonly regulated at the level of E2 recruitment and through HECT E3 oligomerization. The previously mentioned regulatory mechanisms can be controlled through protein-protein interactions, post-translational modifications, the binding of calcium ions, and more. Functional activity is determined not only by substrate recruitment and catalytic activity, but also by the type of ubiquitin polymers catalyzed to the substrate. While this is often determined by the specific HECT member, recent studies demonstrate that HECT E3s can be modulated to alter the type of ubiquitin polymers they catalyze. Insight into these diverse regulatory mechanisms that control HECT E3 activity may open up new avenues for therapeutic strategies aimed at inhibition or enhancement of HECT E3 function in disease-related pathways.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Calcium/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Biocatalysis , Humans , Protein Binding , Protein Multimerization , Substrate Specificity , Ubiquitin-Protein Ligases/chemistry
14.
Am J Hum Genet ; 101(5): 768-788, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29100089

ABSTRACT

Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a whole-exome sequencing approach, we identified 19 exceedingly rare de novo CAMK2A or CAMK2B variants in 24 unrelated individuals with intellectual disability. Variants were assessed for their effect on CAMK2 function and on neuronal migration. For both CAMK2A and CAMK2B, we identified mutations that decreased or increased CAMK2 auto-phosphorylation at Thr286/Thr287. We further found that all mutations affecting auto-phosphorylation also affected neuronal migration, highlighting the importance of tightly regulated CAMK2 auto-phosphorylation in neuronal function and neurodevelopment. Our data establish the importance of CAMK2A and CAMK2B and their auto-phosphorylation in human brain function and expand the phenotypic spectrum of the disorders caused by variants in key players of the glutamatergic signaling pathway.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Intellectual Disability/genetics , Mutation/genetics , Animals , Brain/pathology , Cell Line , Exome/genetics , Female , Glutamic Acid/genetics , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Neurons/pathology , Phosphorylation/genetics , Signal Transduction/genetics
15.
Hum Mol Genet ; 26(11): 2034-2041, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28335037

ABSTRACT

Charcot-Marie-Tooth (CMT) disease type 2 is a genetically heterogeneous group of inherited neuropathies characterized by motor and sensory deficits as a result of peripheral axonal degeneration. We recently reported a frameshift (FS) mutation in the Really Interesting New Gene finger (RING) domain of LRSAM1 (c.2121_2122dup, p.Leu708Argfs) that encodes an E3 ubiquitin ligase, as the cause of axonal-type CMT (CMT2P). However, the frequency of LRSAM1 mutations in CMT2 and the functional basis for their association with disease remains unknown. In this study, we evaluated LRSAM1 mutations in two large Dutch cohorts. In the first cohort (n = 107), we sequenced the full LRSAM1 coding exons in an unbiased fashion, and, in the second cohort (n = 468), we specifically sequenced the last, RING-encoding exon in individuals where other CMT-associated genes had been ruled out. We identified a novel LRSAM1 missense mutation (c.2120C > T, p.Pro707Leu) mapping to the RING domain. Based on our genetic analysis, the occurrence of pathogenic LRSAM1 mutations is estimated to be rare. Functional characterization of the FS, the identified missense mutation, as well as of another recently reported pathogenic missense mutation (c.2081G > A, p.Cys694Tyr), revealed that in vitro ubiquitylation activity was largely abrogated. We demonstrate that loss of the E2-E3 interaction that is an essential prerequisite for supporting ubiquitylation of target substrates, underlies this reduced ubiquitylation capacity. In contrast, LRSAM1 dimerization and interaction with the bona fide target TSG101 were not disrupted. In conclusion, our study provides further support for the role of LRSAM1 in CMT and identifies LRSAM1-mediated ubiquitylation as a common determinant of disease-associated LRSAM1 mutations.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Ubiquitin-Protein Ligases/genetics , Axons/metabolism , Axons/physiology , Base Sequence , Charcot-Marie-Tooth Disease/metabolism , Exons , Female , Frameshift Mutation , Genetic Testing , Humans , Male , Mutation , Mutation, Missense/genetics , Netherlands , Protein Domains , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
16.
Microb Cell ; 5(3): 150-157, 2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29487861

ABSTRACT

Ubiquitination is a posttranslational protein modification that regulates most aspects of cellular life. The sheer number of ubiquitination enzymes that are present in a mammalian cell, over 700 in total, has thus far hampered the analysis of distinct protein ubiquitination cascades in a cellular context. To overcome this complexity we have developed a versatile vector system that allows the reconstitution of specific ubiquitination cascades in the model eukaryote Saccharomyces cerevisae (baker's yeast). The vector system consists of 32 modular yeast shuttle plasmids allowing inducible or constitutive expression of up to four proteins of interest in a single cell. To demonstrate the validity of the system, we show that co-expression in yeast of the mammalian HECT type E3 ubiquitin ligase E6AP (E6-Associated Protein) and a model substrate faithfully recapitulates E6AP-dependent substrate ubiquitination and degradation. In addition, we show that the endogenous sumoylation pathway of S. cerevisiae can specifically sumoylate mouse PML (Promyelocytic leukemia protein). In conclusion, the yeast vector system described in this paper provides a versatile tool to study complex post-translational modifications in a cellular setting.

17.
Microbiol Res ; 190: 27-36, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27393996

ABSTRACT

Src-homology 3 (SH3) domains are small protein-protein interaction modules. While most SH3 domains bind to proline-x-x-proline (PxxP) containing motifs in their binding partners, some SH3 domains recognize motifs other than proline-based sequences. Recently, we showed that the SH3 domain of Candida albicans Rvs167-3 binds peptides enriched in hydrophobic residues and containing a single proline residue (RΦxΦxΦP, where x is any amino acid and Φ is a hydrophobic residue). Here, we demonstrate that the proline in this motif is not required for Rvs167-3 SH3 recognition. Through mutagenesis studies we show that binding of the peptide ligand involves the conserved tryptophan in the canonical PxxP binding pocket as well as residues in the extended n-Src loop of Rvs167-3 SH3. Our studies establish a novel, proline-independent, binding sequence for Rvs167-3 SH3 (RΦxΦxΦ) that is comprised of a positively charged residue (arginine) and three hydrophobic residues.


Subject(s)
Candida albicans/enzymology , Fungal Proteins/metabolism , Proline/metabolism , src Homology Domains , Amino Acid Sequence , DNA Mutational Analysis , Fungal Proteins/genetics , Models, Molecular , Molecular Sequence Data , Proline/genetics , Protein Binding , Protein Conformation , Tryptophan/genetics , Tryptophan/metabolism
18.
Circ Res ; 118(3): 410-9, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26666640

ABSTRACT

RATIONALE: The low-density lipoprotein (LDL) receptor (LDLR) is a central determinant of circulating LDL-cholesterol and as such subject to tight regulation. Recent studies and genetic evidence implicate the inducible degrader of the LDLR (IDOL) as a regulator of LDLR abundance and of circulating levels of LDL-cholesterol in humans. Acting as an E3-ubiquitin ligase, IDOL promotes ubiquitylation and subsequent lysosomal degradation of the LDLR. Consequently, inhibition of IDOL-mediated degradation of the LDLR represents a potential strategy to increase hepatic LDL-cholesterol clearance. OBJECTIVE: To establish whether deubiquitylases counteract IDOL-mediated ubiquitylation and degradation of the LDLR. METHODS AND RESULTS: Using a genetic screening approach, we identify the ubiquitin-specific protease 2 (USP2) as a post-transcriptional regulator of IDOL-mediated LDLR degradation. We demonstrate that both USP2 isoforms, USP2-69 and USP2-45, interact with IDOL and promote its deubiquitylation. IDOL deubiquitylation requires USP2 enzymatic activity and leads to a marked stabilization of IDOL protein. Paradoxically, this also markedly attenuates IDOL-mediated degradation of the LDLR and the ability of IDOL to limit LDL uptake into cells. Conversely, loss of USP2 reduces LDLR protein in an IDOL-dependent manner and limits LDL uptake. We identify a tri-partite complex encompassing IDOL, USP2, and LDLR and demonstrate that in this context USP2 promotes deubiquitylation of the LDLR and prevents its degradation. CONCLUSIONS: Our findings identify USP2 as a novel regulator of lipoprotein clearance owing to its ability to control ubiquitylation-dependent degradation of the LDLR by IDOL.


Subject(s)
Cholesterol, LDL/metabolism , Endopeptidases/metabolism , Receptors, LDL/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Endopeptidases/genetics , Enzyme Stability , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Mice, Knockout , Multienzyme Complexes , Protein Binding , Proteolysis , RNA Interference , Receptors, LDL/genetics , Transfection , Ubiquitin Thiolesterase , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/genetics , Ubiquitination
19.
PLoS One ; 10(6): e0126940, 2015.
Article in English | MEDLINE | ID: mdl-26039593

ABSTRACT

The major fungal pathogen of humans, Candida albicans, is exposed to reactive nitrogen and oxygen species following phagocytosis by host immune cells. In response to these toxins, this fungus activates potent anti-stress responses that include scavenging of reactive nitrosative and oxidative species via the glutathione system. Here we examine the differential roles of two glutathione recycling enzymes in redox homeostasis, stress adaptation and virulence in C. albicans: glutathione reductase (Glr1) and the S-nitrosoglutathione reductase (GSNOR), Fdh3. We show that the NADPH-dependent Glr1 recycles GSSG to GSH, is induced in response to oxidative stress and is required for resistance to macrophage killing. GLR1 deletion increases the sensitivity of C. albicans cells to H2O2, but not to formaldehyde or NO. In contrast, Fdh3 detoxifies GSNO to GSSG and NH3, and FDH3 inactivation delays NO adaptation and increases NO sensitivity. C. albicans fdh3⎔ cells are also sensitive to formaldehyde, suggesting that Fdh3 also contributes to formaldehyde detoxification. FDH3 is induced in response to nitrosative, oxidative and formaldehyde stress, and fdh3Δ cells are more sensitive to killing by macrophages. Both Glr1 and Fdh3 contribute to virulence in the Galleria mellonella and mouse models of systemic infection. We conclude that Glr1 and Fdh3 play differential roles during the adaptation of C. albicans cells to oxidative, nitrosative and formaldehyde stress, and hence during the colonisation of the host. Our findings emphasise the importance of the glutathione system and the maintenance of intracellular redox homeostasis in this major pathogen.


Subject(s)
Adaptation, Physiological , Aldehyde Oxidoreductases , Candida albicans , Fungal Proteins , Glutathione Reductase , Oxidative Stress , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Animals , Candida albicans/enzymology , Candida albicans/genetics , Candida albicans/pathogenicity , Candidiasis/enzymology , Candidiasis/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Glutathione Reductase/genetics , Glutathione Reductase/metabolism , Humans , Macrophages/metabolism , Macrophages/microbiology , Mice , Nitric Oxide/metabolism
20.
PLoS One ; 10(6): e0129229, 2015.
Article in English | MEDLINE | ID: mdl-26068101

ABSTRACT

To explore the conservation of Src homology 3 (SH3) domain-mediated networks in evolution, we compared the specificity landscape of these domains among four yeast species, Saccharomyces cerevisiae, Ashbya gossypii, Candida albicans, and Schizosaccharomyces pombe, encompassing 400 million years of evolution. We first aligned and catalogued the families of SH3-containing proteins in these four species to determine the relationships between homologous domains. Then, we tagged and purified all soluble SH3 domains (82 in total) to perform a quantitative peptide assay (SPOT) for each SH3 domain. All SPOT readouts were hierarchically clustered and we observed that the organization of the SH3 specificity landscape in three distinct profile classes remains conserved across these four yeast species. We also produced a specificity profile for each SH3 domain from manually aligned top SPOT hits and compared the within-family binding motif consensus. This analysis revealed a striking example of binding motif divergence in a C. albicans Rvs167 paralog, which cannot be explained by overall SH3 sequence or interface residue divergence, and we validated this specificity change with a yeast two-hybrid (Y2H) assay. In addition, we show that position-weighted matrices (PWM) compiled from SPOT assays can be used for binding motif screening in potential binding partners and present cases where motifs are either conserved or lost among homologous SH3 interacting proteins. Finally, by comparing pairwise SH3 sequence identity to binding profile correlation we show that for ~75% of all analyzed families the SH3 specificity profile was remarkably conserved over a large evolutionary distance. Thus, a high sequence identity within an SH3 domain family predicts conserved binding specificity, whereas divergence in sequence identity often coincided with a change in binding specificity within this family. As such, our results are important for future studies aimed at unraveling complex specificity networks of peptide recognition domains in higher eukaryotes, including mammals.


Subject(s)
Evolution, Molecular , Fungal Proteins/chemistry , Yeasts/metabolism , Amino Acid Sequence , Binding Sites , Candida albicans/metabolism , Fungal Proteins/metabolism , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Saccharomyces cerevisiae/metabolism , Schizosaccharomyces/metabolism , Sequence Alignment , Two-Hybrid System Techniques , src Homology Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...