Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38328089

ABSTRACT

Cellular condensates often consist of 10s to 100s of distinct interacting molecular species. Because of the complexity of these interactions, predicting the point at which they will undergo phase separation into discrete compartments is daunting. Using experiments and computation, we therefore studied a simple model system consisting of 2 proteins, polySH3 and polyPRM, designed for pentavalent heterotypic binding. We tested whether the peak solubility product, the product of dilute phase monomer concentrations, is a predictive parameter for the onset of phase separation. Titrating up equal total concentrations of each component showed that the maximum solubility product does approximately coincide with the threshold for phase separation in both the experiments and models. However, we found that measurements of dilute phase concentration include contributions from small oligomers, not just monomers; therefore, a quantitative comparison of the experiments and models required inclusion of small oligomers in the model analysis. We also examined full phase diagrams where the model results were almost symmetric along the diagonal, but the experimental results were highly asymmetric. This led us to perform dynamic light scattering experiments, where we discovered a weak homotypic interaction for polyPRM; when this was added to the computational model, it was able to recapitulate the experimentally observed asymmetry. Thus, comparing experiments to simulation reveals that the solubility product can be predictive of phase separation, even if small oligomers and low affinity homotypic interactions preclude experimental measurement of monomer concentration.

2.
Nat Cell Biol ; 26(3): 310-312, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38424272

Subject(s)
Organelles , Cytoplasm
3.
Sci Adv ; 9(17): eadf6205, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37126554

ABSTRACT

During T cell activation, the transmembrane adaptor protein LAT (linker for activation of T cells) forms biomolecular condensates with Grb2 and Sos1, facilitating signaling. LAT has also been associated with cholesterol-rich condensed lipid domains; However, the potential coupling between protein condensation and lipid phase separation and its role in organizing T cell signaling were unknown. Here, we report that LAT/Grb2/Sos1 condensates reconstituted on model membranes can induce and template lipid domains, indicating strong coupling between lipid- and protein-based phase separation. Correspondingly, activation of T cells induces cytoplasmic protein condensates that associate with and stabilize raft-like membrane domains. Inversely, lipid domains nucleate and stabilize LAT protein condensates in both reconstituted and living systems. This coupling of lipid and protein assembly is functionally important, as uncoupling of lipid domains from cytoplasmic protein condensates abrogates T cell activation. Thus, thermodynamic coupling between protein condensates and ordered lipid domains regulates the functional organization of living membranes.


Subject(s)
Membrane Proteins , T-Lymphocytes , T-Lymphocytes/metabolism , Membrane Proteins/metabolism , Signal Transduction , Lipids
4.
RNA ; 28(1): 36-47, 2022 01.
Article in English | MEDLINE | ID: mdl-34772786

ABSTRACT

Exciting recent work has highlighted that numerous cellular compartments lack encapsulating lipid bilayers (often called "membraneless organelles"), and that their structure and function are central to the regulation of key biological processes, including transcription, RNA splicing, translation, and more. These structures have been described as "biomolecular condensates" to underscore that biomolecules can be significantly concentrated in them. Many condensates, including RNA granules and processing bodies, are enriched in proteins and nucleic acids. Biomolecular condensates exhibit a range of material states from liquid- to gel-like, with the physical process of liquid-liquid phase separation implicated in driving or contributing to their formation. To date, in vitro studies of phase separation have provided mechanistic insights into the formation and function of condensates. However, the link between the often micron-sized in vitro condensates with nanometer-sized cellular correlates has not been well established. Consequently, questions have arisen as to whether cellular structures below the optical resolution limit can be considered biomolecular condensates. Similarly, the distinction between condensates and discrete dynamic hub complexes is debated. Here we discuss the key features that define biomolecular condensates to help understand behaviors of structures containing and generating RNA.


Subject(s)
Biomolecular Condensates/chemistry , Processing Bodies/chemistry , RNA-Binding Proteins/chemistry , RNA/chemistry , Ribonucleoproteins/chemistry , Stress Granules/chemistry , Biomolecular Condensates/metabolism , Eukaryotic Cells/chemistry , Eukaryotic Cells/metabolism , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , Processing Bodies/metabolism , Protein Biosynthesis , RNA/metabolism , RNA Splicing , RNA-Binding Proteins/metabolism , Ribonucleoproteins/metabolism , Stress Granules/metabolism , Terminology as Topic , Transcription, Genetic
6.
Elife ; 102021 05 11.
Article in English | MEDLINE | ID: mdl-33973848

ABSTRACT

Sigma 1 receptor (S1R) is a 223-amino-acid-long transmembrane endoplasmic reticulum (ER) protein. S1R modulates activity of multiple effector proteins and is a well-established drug target. However, signaling functions of S1R in cells are poorly understood. Here, we test the hypothesis that biological activity of S1R in cells can be explained by its ability to interact with cholesterol and to form cholesterol-enriched microdomains in the ER membrane. By performing experiments in reduced reconstitution systems, we demonstrate direct effects of cholesterol on S1R clustering. We identify a novel cholesterol-binding motif in the transmembrane region of human S1R. Mutations of this motif impair association of recombinant S1R with cholesterol beads, affect S1R clustering in vitro and disrupt S1R subcellular localization. We demonstrate that S1R-induced membrane microdomains have increased local membrane thickness and that increased local cholesterol concentration and/or membrane thickness in these microdomains can modulate signaling of inositol-requiring enzyme 1α in the ER. Further, S1R agonists cause disruption of S1R clusters, suggesting that biological activity of S1R agonists is linked to remodeling of ER membrane microdomains. Our results provide novel insights into S1R-mediated signaling mechanisms in cells.


Subject(s)
Cholesterol/metabolism , Endoplasmic Reticulum/metabolism , Receptors, sigma/genetics , Receptors, sigma/metabolism , Signal Transduction , HEK293 Cells , Humans , Intracellular Membranes/metabolism , Membrane Microdomains , Protein Binding , Sigma-1 Receptor
8.
Curr Opin Cell Biol ; 69: 48-54, 2021 04.
Article in English | MEDLINE | ID: mdl-33461072

ABSTRACT

Clustering is a prominent feature of receptors at the plasma membrane (PM). It plays an important role in signaling. Liquid-liquid phase separation (LLPS) of proteins is emerging as a novel mechanism underlying the observed clustering. Receptors/transmembrane signaling proteins can be core components essential for LLPS (such as LAT or nephrin) or clients enriched at the phase-separated condensates (for example, at the postsynaptic density or at tight junctions). Condensate formation has been shown to regulate signaling in multiple ways, including by increasing protein binding avidity and by modulating the local biochemical environment. In moving forward, it is important to study protein LLPS at the PM of living cells, its interplay with other factors underlying receptor clustering, and its signaling and functional consequences.


Subject(s)
Signal Transduction , Cell Membrane , Humans , Protein Binding
9.
Nat Cell Biol ; 22(6): 674-688, 2020 06.
Article in English | MEDLINE | ID: mdl-32451441

ABSTRACT

The dynamin GTPase is known to bundle actin filaments, but the underlying molecular mechanism and physiological relevance remain unclear. Our genetic analyses revealed a function of dynamin in propelling invasive membrane protrusions during myoblast fusion in vivo. Using biochemistry, total internal reflection fluorescence microscopy, electron microscopy and cryo-electron tomography, we show that dynamin bundles actin while forming a helical structure. At its full capacity, each dynamin helix captures 12-16 actin filaments on the outer rim of the helix. GTP hydrolysis by dynamin triggers disassembly of fully assembled dynamin helices, releasing free dynamin dimers/tetramers and facilitating Arp2/3-mediated branched actin polymerization. The assembly/disassembly cycles of dynamin promote continuous actin bundling to generate mechanically stiff actin super-bundles. Super-resolution and immunogold platinum replica electron microscopy revealed dynamin along actin bundles at the fusogenic synapse. These findings implicate dynamin as a unique multifilament actin-bundling protein that regulates the dynamics and mechanical strength of the actin cytoskeletal network.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Cell Communication , Drosophila melanogaster/metabolism , Dynamins/metabolism , Endocytosis , Actin-Related Protein 2-3 Complex/metabolism , Actins/genetics , Amino Acid Sequence , Animals , Drosophila melanogaster/genetics , Dynamins/genetics , Female , Guanosine Triphosphate/metabolism , Male , Myoblasts/cytology , Myoblasts/metabolism , Protein Binding , Sequence Homology
10.
Elife ; 82019 07 03.
Article in English | MEDLINE | ID: mdl-31268421

ABSTRACT

During T cell activation, biomolecular condensates form at the immunological synapse (IS) through multivalency-driven phase separation of LAT, Grb2, Sos1, SLP-76, Nck, and WASP. These condensates move radially at the IS, traversing successive radially-oriented and concentric actin networks. To understand this movement, we biochemically reconstituted LAT condensates with actomyosin filaments. We found that basic regions of Nck and N-WASP/WASP promote association and co-movement of LAT condensates with actin, indicating conversion of weak individual affinities to high collective affinity upon phase separation. Condensates lacking these components were propelled differently, without strong actin adhesion. In cells, LAT condensates lost Nck as radial actin transitioned to the concentric network, and engineered condensates constitutively binding actin moved aberrantly. Our data show that Nck and WASP form a clutch between LAT condensates and actin in vitro and suggest that compositional changes may enable condensate movement by distinct actin networks in different regions of the IS.


Subject(s)
Lymphocyte Activation , Protein Multimerization , Signal Transduction , T-Lymphocytes/metabolism , Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Humans , Membrane Proteins/metabolism , Oncogene Proteins/metabolism , Protein Binding , Protein Transport , Wiskott-Aldrich Syndrome Protein/metabolism
11.
Annu Rev Biophys ; 48: 465-494, 2019 05 06.
Article in English | MEDLINE | ID: mdl-30951647

ABSTRACT

Cell surface transmembrane receptors often form nanometer- to micrometer-scale clusters to initiate signal transduction in response to environmental cues. Extracellular ligand oligomerization, domain-domain interactions, and binding to multivalent proteins all contribute to cluster formation. Here we review the current understanding of mechanisms driving cluster formation in a series of representative receptor systems: glycosylated receptors, immune receptors, cell adhesion receptors, Wnt receptors, and receptor tyrosine kinases. We suggest that these clusters share properties of systems that undergo liquid-liquid phase separation and could be investigated in this light.


Subject(s)
Cell Membrane/metabolism , Signal Transduction , Animals , Cell Membrane/chemistry , Humans , Ligands , Polymerization , Receptors, Cell Surface/metabolism
12.
Science ; 363(6431): 1093-1097, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30846599

ABSTRACT

Biomolecular condensates concentrate macromolecules into foci without a surrounding membrane. Many condensates appear to form through multivalent interactions that drive liquid-liquid phase separation (LLPS). LLPS increases the specific activity of actin regulatory proteins toward actin assembly by the Arp2/3 complex. We show that this increase occurs because LLPS of the Nephrin-Nck-N-WASP signaling pathway on lipid bilayers increases membrane dwell time of N-WASP and Arp2/3 complex, consequently increasing actin assembly. Dwell time varies with relative stoichiometry of the signaling proteins in the phase-separated clusters, rendering N-WASP and Arp2/3 activity stoichiometry dependent. This mechanism of controlling protein activity is enabled by the stoichiometrically undefined nature of biomolecular condensates. Such regulation should be a general feature of signaling systems that assemble through multivalent interactions and drive nonequilibrium outputs.


Subject(s)
Actin-Related Protein 2-3 Complex/metabolism , Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cell Membrane/metabolism , Membrane Proteins/metabolism , Oncogene Proteins/metabolism , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism , Cell Line, Tumor , Humans , Ligands , Lipid Bilayers , Phase Transition , Protein Binding , Signal Transduction , src Homology Domains
13.
J Mol Biol ; 430(23): 4666-4684, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30099028

ABSTRACT

Biomolecular condensates are two- and three-dimensional compartments in eukaryotic cells that concentrate specific collections of molecules without an encapsulating membrane. Many condensates behave as dynamic liquids and appear to form through liquid-liquid phase separation driven by weak, multivalent interactions between macromolecules. In this review, we discuss current models and data regarding the control of condensate composition, and we describe our current understanding of the composition of representative condensates including PML nuclear bodies, P-bodies, stress granules, the nucleolus, and two-dimensional membrane localized LAT and nephrin clusters. Specific interactions, such as interactions between modular binding domains, weaker interactions between intrinsically disorder regions and nucleic acid base pairing, and nonspecific interactions, such as electrostatic interactions and hydrophobic interactions, influence condensate composition. Understanding how specific condensate composition is determined is essential to understanding condensates as biochemical entities and ultimately discerning their cellular and organismic functions.


Subject(s)
Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , Nucleic Acids/chemistry , Nucleic Acids/metabolism , Animals , Cell Nucleolus/metabolism , Cytoplasm/metabolism , Eukaryotic Cells/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Models, Molecular , Molecular Conformation , Organelles/chemistry , Organelles/metabolism , Promyelocytic Leukemia Protein/chemistry , Promyelocytic Leukemia Protein/metabolism
14.
J Am Chem Soc ; 139(49): 18009-18015, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29182244

ABSTRACT

Tyrosine phosphorylation of membrane receptors and scaffold proteins followed by recruitment of SH2 domain-containing adaptor proteins constitutes a central mechanism of intracellular signal transduction. During early T-cell receptor (TCR) activation, phosphorylation of linker for activation of T cells (LAT) leading to recruitment of adaptor proteins, including Grb2, is one prototypical example. LAT contains multiple modifiable sites, and this multivalency may provide additional layers of regulation, although this is not well understood. Here, we quantitatively analyze the effects of multivalent phosphorylation of LAT by reconstituting the initial reactions of the TCR signaling pathway on supported membranes. Results from a series of LAT constructs with combinatorial mutations of tyrosine residues reveal a previously unidentified allosteric mechanism in which the binding affinity of LAT:Grb2 depends on the phosphorylation at remote tyrosine sites. Additionally, we find that LAT:Grb2 binding affinity is altered by membrane localization. This allostery mainly regulates the kinetic on-rate, not off-rate, of LAT:Grb2 interactions. LAT is an intrinsically disordered protein, and these data suggest that phosphorylation changes the overall ensemble of configurations to modulate the accessibility of other phosphorylated sites to Grb2. Using Grb2 as a phosphorylation reporter, we further monitored LAT phosphorylation by TCR ζ chain-recruited ZAP-70, which suggests a weakly processive catalysis on membranes. Taken together, these results suggest that signal transmission through LAT is strongly gated and requires multiple phosphorylation events before efficient signal transmission is achieved.


Subject(s)
GRB2 Adaptor Protein/metabolism , Intrinsically Disordered Proteins/metabolism , Allosteric Regulation , Calorimetry , Cell Membrane/metabolism , Kinetics , Phosphoproteins/metabolism , Phosphorylation , Protein Binding , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Single Molecule Imaging , Tyrosine/metabolism , ZAP-70 Protein-Tyrosine Kinase/metabolism
15.
Methods Mol Biol ; 1584: 65-76, 2017.
Article in English | MEDLINE | ID: mdl-28255696

ABSTRACT

Biochemical reconstitution has served as an important tool for understanding the mechanisms of many cellular processes including DNA replication, transcription, translation, vesicle trafficking, and ubiquitin-mediated proteolysis. Here, we demonstrate that biochemical reconstitution can be applied to studying a complex signaling pathway involving as many as 12 proteins or protein complexes acting at the surface of model membranes. We show that a temporal sequence of events in activated T cells beginning with phosphorylation of the T cell receptor and culminating in the activation of actin polymerization can be replicated in vitro. Our reconstitution demonstrates the sufficiency of these proteins in producing many of the complex behaviors observed during T cell activation. The ability to manipulate all of the components, measure reaction rates, and observe molecular behaviors, including at single molecule resolution, has enabled us to gain insight into some of the important biochemical features of this signaling pathway such as microcluster formation. The same system could be adapted to study other membrane-proximal signaling pathways, including growth factor receptors, death receptors, and Eph receptors.


Subject(s)
Lipid Bilayers/chemistry , Lymphocyte Activation , Receptors, Antigen, T-Cell/chemistry , Signal Transduction , T-Lymphocytes/chemistry , Animals , Cell-Free System/chemistry , Cell-Free System/immunology , Humans , Lipid Bilayers/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology
16.
Science ; 352(6285): 595-9, 2016 Apr 29.
Article in English | MEDLINE | ID: mdl-27056844

ABSTRACT

Activation of various cell surface receptors triggers the reorganization of downstream signaling molecules into micrometer- or submicrometer-sized clusters. However, the functional consequences of such clustering have been unclear. We biochemically reconstituted a 12-component signaling pathway on model membranes, beginning with T cell receptor (TCR) activation and ending with actin assembly. When TCR phosphorylation was triggered, downstream signaling proteins spontaneously separated into liquid-like clusters that promoted signaling outputs both in vitro and in human Jurkat T cells. Reconstituted clusters were enriched in kinases but excluded phosphatases and enhanced actin filament assembly by recruiting and organizing actin regulators. These results demonstrate that protein phase separation can create a distinct physical and biochemical compartment that facilitates signaling.


Subject(s)
Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Membrane Proteins/metabolism , Receptors, Antigen, T-Cell/agonists , T-Lymphocytes/metabolism , Fluorescence Recovery After Photobleaching , Humans , Jurkat Cells , Mitogen-Activated Protein Kinase Kinases , Phosphorylation , Polymerization , Signal Transduction
18.
Biophys J ; 104(3): 520-32, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23442903

ABSTRACT

Mathematical modeling has established its value for investigating the interplay of biochemical and mechanical mechanisms underlying actin-based motility. Because of the complex nature of actin dynamics and its regulation, many of these models are phenomenological or conceptual, providing a general understanding of the physics at play. But the wealth of carefully measured kinetic data on the interactions of many of the players in actin biochemistry cries out for the creation of more detailed and accurate models that could permit investigators to dissect interdependent roles of individual molecular components. Moreover, no human mind can assimilate all of the mechanisms underlying complex protein networks; so an additional benefit of a detailed kinetic model is that the numerous binding proteins, signaling mechanisms, and biochemical reactions can be computationally organized in a fully explicit, accessible, visualizable, and reusable structure. In this review, we will focus on how comprehensive and adaptable modeling allows investigators to explain experimental observations and develop testable hypotheses on the intracellular dynamics of the actin cytoskeleton.


Subject(s)
Actin Cytoskeleton/chemistry , Models, Biological , Actin Cytoskeleton/metabolism , Actins/chemistry , Actins/metabolism , Animals , Humans , Microfilament Proteins/chemistry , Microfilament Proteins/metabolism
19.
J Cell Biol ; 197(5): 643-58, 2012 May 28.
Article in English | MEDLINE | ID: mdl-22613834

ABSTRACT

Regulation of actin dynamics through the Nck/N-WASp (neural Wiskott-Aldrich syndrome protein)/Arp2/3 pathway is essential for organogenesis, cell invasiveness, and pathogen infection. Although many of the proteins involved in this pathway are known, the detailed mechanism by which it functions remains undetermined. To examine the signaling mechanism, we used a two-pronged strategy involving computational modeling and quantitative experimentation. We developed predictions for Nck-dependent actin polymerization using the Virtual Cell software system. In addition, we used antibody-induced aggregation of membrane-targeted Nck SH3 domains to test these predictions and to determine how the number of molecules in Nck aggregates and the density of aggregates affected localized actin polymerization in living cells. Our results indicate that the density of Nck molecules in aggregates is a critical determinant of actin polymerization. Furthermore, results from both computational simulations and experimentation support a model in which the Nck/N-WASp/Arp2/3 stoichiometry is 4:2:1. These results provide new insight into activities involving localized actin polymerization, including tumor cell invasion, microbial pathogenesis, and T cell activation.


Subject(s)
Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Oncogene Proteins/metabolism , Polymerization , Actins/chemistry , Adaptor Proteins, Signal Transducing/chemistry , Cell Survival , Computer Simulation , HEK293 Cells , Humans , Oncogene Proteins/chemistry , Signal Transduction , src Homology Domains
20.
Am J Transl Res ; 1(1): 55-61, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19966938

ABSTRACT

We investigate the feasibility of using microarray gene expression profiling technology to analyze core biopsies of renal tumors for classification of tumor histology. Core biopsies were obtained ex-vivo from 7 renal tumors-comprised of four histological subtypes-following radical nephrectomy using 18-gauge biopsy needles. RNA was isolated from these samples and, in the case of biopsy samples, amplified by in vitro transcription. Microarray analysis was then used to quantify the mRNA expression patterns in these samples relative to non-diseased renal tissue mRNA. Genes with significant variation across all non-biopsy tumor samples were identified, and the relationship between tumor and biopsy samples in terms of expression levels of these genes was then quantified in terms of Euclidean distance, and visualized by complete linkage clustering. Final pathologic assessment of kidney tumors demonstrated clear cell renal cell carcinoma (4), oncocytoma (1), angiomyolipoma (1) and adrenalcortical carcinoma (1). Five of the seven biopsy samples were most similar in terms of gene expression to the resected tumors from which they were derived in terms of Euclidean distance. All seven biopsies were assigned to the correct histological class by hierarchical clustering. We demonstrate the feasibility of gene expression profiling of core biopsies of renal tumors to classify tumor histology.

SELECTION OF CITATIONS
SEARCH DETAIL
...