Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; 30(2): 179-191, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38457218

ABSTRACT

Dry particle coating processes are of key importance for creating functionalized materials. By a change in surface structure, initiated during coating, a surface property change and thus functionalization can be achieved. This study introduces an innovative approach employing 3D X-ray micro-computed tomography (micro-CT) to characterize coated particles, consisting of spherical alumina particles (d50 = 45.64 µm), called hosts, surrounded by spherical polystyrene particles (d50 = 3.5 µm), called guests. The formed structures, hetero-aggregates, are generated by dry particle coating using mechano-fusion (MF). A deeper understanding of the influence of MF process parameters on the coating structures is a crucial step toward tailoring of coating structure, resulting surface property and functionalization. Therefore, the influence of rotational speed, process time, and total mechanical energy input during MF is explored. Leveraging micro-CT data, acquired of coated particles, enables non-stereologically biased and quantitative coating structure analysis. The guest's coating thickness is analyzed using the maximum inscribed sphere and ray method, two different local thickness measurement approaches. Particle-discrete information of the coating structure are available after a proper image processing workflow is implemented. Coating efficiency and guest's neighboring relations (nearest neighbor distance and number of neighbors inside search radius) are evaluated.

2.
Microsc Microanal ; : 1-11, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35039098

ABSTRACT

In the present paper, as part of an interdisciplinary research project (Priority Programme SPP2045), we propose a possible way to design an open access archive for particle-discrete tomographic datasets: the PARROT database (https://parrot.tu-freiberg.de). This archive is the result of a pilot study in the field of particle technology and three use cases are presented for illustrative purposes. Instead of providing a detailed instruction manual, we focus on the methodologies of such an archive. The presented use cases stem from our working group and are intended to demonstrate the advantage of using such an archive with concise and consistent data for potential and ongoing studies. Data and metadata merely serve as examples and need to be adapted for disciplines not concerned here. Since all datasets within the PARROT database and its source code are freely accessible, this study represents a starting point for similar projects.

3.
Microsc Microanal ; 26(4): 676-688, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32627723

ABSTRACT

The three-dimensional characterization of distributed particle properties in the micro- and nanometer range is essential to describe and understand highly specific separation processes in terms of selectivity and yield. Both performance measures play a decisive role in the development and improvement of modern functional materials. In this study, we mixed spherical glass particles (0.4­5.8 µm diameter) with glass fibers (diameter 10 µm, length 18­660 µm) to investigate a borderline case of maximum difference in the aspect ratio and a significant difference in the characteristic length to characterize the system over several size scales. We immobilized the particles within a wax matrix and created sample volumes suitable for computed tomographic (CT) measurements at two different magnification scales (X-ray micro- and nano-CT). Fiber diameter and length could be described well on the basis of the low-resolution micro-CT measurements on the entire sample volume. In contrast, the spherical particle system could only be described with sufficient accuracy by combining micro-CT with high-resolution nano-CT measurements on subvolumes of reduced sample size. We modeled the joint (bivariate) distribution of fiber length and diameter with a parametric copula as a basic example, which is equally suitable for more complex distributions of irregularly shaped particles. This enables us to capture the multidimensional correlation structure of particle systems with statistically representative quantities.

4.
MethodsX ; 7: 100757, 2020.
Article in English | MEDLINE | ID: mdl-32021818

ABSTRACT

In X-ray microtomography the sample has to meet special requirements regarding (1) mechanical stability (blurring), (2) geometry (FOV - field of view, rotational symmetry) and (3) composition (high attenuating phases). When analyzing micron-sized particulate material (e.g. powders), the particles in the FOV have to be (4) statistically representative and fixation (embedding matrix) becomes a critical issue due to segregation and agglomeration effects. The authors describe a self-constructed, low-cost automated syringe that allows controlling aspiration speed and suctioning volume. The carrier matrix is a wax structure that is shock frozen within a small polymeric tube. With this, the authors could successfully validate the method to determine particle size distributions (PSD). The described method is used in a related study by Ditscherlein et al. (2019). •Low-cost automated syringe constructed with LEGO-parts and automatized with Arduino-microcontroller.•Particle sample embedded within a shock-frozen wax matrix.•Reproducibility successfully demonstrated by determining particle size distributions.

5.
Microsc Microanal ; 24(5): 461-470, 2018 10.
Article in English | MEDLINE | ID: mdl-30303053

ABSTRACT

In this paper, three-dimensional (3D) image data of ore particle systems is investigated. By combining X-ray microtomography with scanning electron microscope (SEM)-based image analysis, additional information about the mineralogical composition from certain planar sections can be gained. For the analysis of tomographic images of particle systems the extraction of single particles is essential. This is performed with a marker-based watershed algorithm and a post-processing step utilizing a neural network to reduce oversegmentation. The results are validated by comparing the 3D particle-wise segmentation empirically with 2D SEM images, which have been obtained with a different imaging process and segmentation algorithm. Finally, a stereological application is shown, in which planar SEM images are embedded into the tomographic 3D image. This allows the estimation of local X-ray attenuation coefficients, which are material-specific quantities, in the entire tomographic image.

SELECTION OF CITATIONS
SEARCH DETAIL
...