Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(14): 6359-6369, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38512318

ABSTRACT

There is only sparse empirical data on the settling velocity of small, nonbuoyant microplastics thus far, although it is an important parameter governing their vertical transport within aquatic environments. This study reports the settling velocities of 4031 exemplary microplastic particles. Focusing on the environmentally most prevalent particle shapes, irregular microplastic fragments of four different polymer types (9-289 µm) and five discrete length fractions (50-600 µm) of common nylon and polyester fibers are investigated, respectively. All settling experiments are carried out in quiescent water by using a specialized optical imaging setup. The method has been previously validated in order to minimize disruptive factors, e.g., thermal convection or particle interactions, and thus enable the precise measurements of the velocities of individual microplastic particles (0.003-9.094 mm/s). Based on the obtained data, ten existing models for predicting a particle's terminal settling velocity are assessed. It is concluded that models, which were specifically deduced from empirical data on larger microplastics, fail to provide accurate predictions for small microplastics. Instead, a different approach is highlighted as a viable option for computing settling velocities across the microplastics continuum in terms of size, density, and shape.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Nylons , Water , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
2.
Article in English | MEDLINE | ID: mdl-32768657

ABSTRACT

The continuously growing plastic production and incomplete recycling processes open manifold entry routes for microplastic particles (MPs) into the environment. Since knowledge on trophic transfer of contaminants sorbed to MPs is still insufficient for freshwater systems, the transfer of the model pollutant benzo(k)fluoranthene (BkF) sorbed to polymethyl methacrylate (PMMA) particles in a limnic food web was investigated: Two freshwater invertebrates (Daphnia magna and Chironomus riparius larvae) were selected and either left untreated, exposed to pristine PMMA, PMMA-associated BkF, or exposed to dissolved BkF (BkFaq). As second-level consumers, zebrafish (Danio rerio) were fed twice daily with pre-treated invertebrates over two days. Induction of hepatic cytochrome P450 by BkF was determined as 7-ethoxy-O-resorufin deethylase (EROD) activity. Both invertebrate species readily ingested PMMA particles, tracked via fluorescence microscopy and accumulated BkFaq, measured via GC-MS. Fluorescence signals in gastrointestinal tracts of zebrafish were quantified with confocal laser scanning microscopy (CLSM). The fluorescence signal in gastrointestinal tracts of zebrafish was not altered, whereas, EROD activity was significantly induced when zebrafish were fed with Chironomus riparius, pre-exposed to BkFaq. Trophic exposure scenarios with BkF sorbed to PMMA did not result in any alterations of investigated endpoints in both invertebrate species and zebrafish compared to controls. Given that BkF amounts were in the low ng-range, as detected by GC-MS, the transport of MP-sorbed BkF to zebrafish was less effective than direct exposure to waterborne BkFaq, and the potential threat of trophic transfer of substances such as BkF in limnic food webs may have been overestimated.


Subject(s)
Daphnia/growth & development , Fluorenes/toxicity , Food Chain , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish/growth & development , Animals , Cytochrome P-450 CYP1A1/metabolism , Intestines/drug effects , Liver/drug effects , Liver/metabolism
3.
Chemosphere ; 215: 563-573, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30342401

ABSTRACT

Powdered activated carbon (PAC) for organic micro-pollutant (OMP) removal can be applied effectively on wastewater treatment plant (WWTP) effluents by using re-circulation schemes, accumulating the PAC in the system. This technique is complex because several factors are unknown: (i) the PAC concentration in the system, (ii) specific and average contact times of PAC particles, and (iii) PAC particle loadings with target compounds/competing water constituents. Thus, performance projections (e.g. in the lab) are very challenging. We sampled large-scale PAC plants with PAC sludge re-circulation on eight different WWTPs. The PAC plant-induced OMP removals were notably different, even when considering PAC concentrations in proportion to background organic sum parameters. The variability is likely caused by differing PAC products, varying water composition, differently effective plant/re-circulation operation, and variable biodegradation. Plant PAC samples and parts of the PAC plant influent samples were used in laboratory tests, applying multiples (0.5, 1, 2, 4) of the respective large-scale "fresh" PAC doses, and several fixed contact times (0.5, 1, 2, 4, 48 h). The aim was to empirically identify suitable combinations of lab PAC dose (as multiples of the plant PAC dose) and contact time, which represent the PAC plant performances in removing OMPs (for specific OMPs at single locations, and for averages of different OMPs at all locations). E.g., for five well adsorbing, little biodegradable OMPs, plant performances can be projected by using a lab PAC dose of twice the respective full-scale PAC dose and 4 h lab contact time (standard deviation of 13 %-points).


Subject(s)
Charcoal/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Biodegradation, Environmental , Organic Chemicals/isolation & purification , Waste Disposal, Fluid/methods
4.
Environ Sci Technol ; 52(14): 7859-7866, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29890066

ABSTRACT

Adsorption onto activated carbon is a promising option for removing organic micropollutants (OMPs) from wastewater treatment plant (WWTP) effluents. The heterogeneity of activated carbons and adsorption competition between OMPs and adsorbable compounds of the effluent organic matter (EfOM) complicate the prediction of OMP removals. Thus, reliable and simple test systems are desirable. For this study, batch experiments with powdered activated carbon (PAC) were carried out to examine methyl orange (MO) as a selected surrogate competitor to simulate EfOM adsorption competition. MO solutions were spiked with carbamazepine (CBZ) as an indicator substance for well-adsorbing OMPs. On the basis of CBZ adsorption isotherms in WWTP effluents, MO concentrations for batch test solutions with identical adsorption competition toward CBZ were calculated. The calculations were performed according to an empirical model of CBZ adsorption in the presence of MO, since predictions employing the ideal adsorbed solution theory (IAST) proved to be inaccurate. Comparative batch tests with five different PACs were conducted with WWTP effluent and respective MO batch test solutions. Except for one PAC, the achieved CBZ removals were very similar in WWTP effluent and the test solution. Additionally, a universal correlation between MO and CBZ removals was found for four PACs.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Carbon , Charcoal , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...