Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Gene Ther ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039193

ABSTRACT

Trk (NTRK) receptor and NTRK gene fusions are oncogenic drivers of a wide variety of tumors. Although Trk receptors are typically activated at the cell surface, signaling of constitutive active Trk and diverse intracellular NTRK fusion oncogenes is barely investigated. Here, we show that a high intracellular abundance is sufficient for neurotrophin-independent, constitutive activation of TrkB kinase domains. In HEK293 cells, constitutive active TrkB kinase and an intracellular NTRK2-fusion oncogene (SQSTM1-NTRK2) reduced actin filopodia dynamics, phosphorylated FAK, and altered the cell morphology. Atypical cellular responses could be mimicked with the intracellular kinase domain, which did not activate the Trk-associated MAPK/ERK pathway. In glioblastoma-like U87MG cells, expression of TrkB or SQSTM1-NTRK2 reduced cell motility and caused drastic changes in the transcriptome. Clinically approved Trk inhibitors or mutating Y705 in the kinase domain, blocked the cellular effects and transcriptome changes. Atypical signaling was also seen for TrkA and TrkC. Moreover, hallmarks of atypical pTrk kinase were found in biopsies of Nestin-positive glioblastoma. Therefore, we suggest Western blot-like immunoassay screening of NTRK-related (brain) tumor biopsies to identify patients with atypical panTrk or phosphoTrk signals. Such patients could be candidates for treatment with NTRK inhibitors such as Larotrectinhib or Entrectinhib.

2.
Curr Neurovasc Res ; 13(3): 199-206, 2016.
Article in English | MEDLINE | ID: mdl-27184031

ABSTRACT

Dabigatran etexilate (DE), a direct-acting, oral inhibitor of thrombin, significantly reduces the risk of stroke compared with traditional anticoagulants, without increasing the risk of major bleeding. However, studies on the fate of cerebral tissue after ischemic stroke in patients receiving DE are sparse and the role of dabigatran-mediated reduction of thrombin in this context has not yet been investigated. Here, we investigated whether pretreatment with DE reduces thrombin-mediated pro-inflammatory mechanisms and leakage of the blood-brain barrier (BBB) following ischemic stroke in rats. Male Wistar rats received DE (15 mg/kg) or a vehicle solution 1 hour before transient middle cerebral artery occlusion (tMCAO) for 90 minutes. Infarct volume, neurologic outcome and intracranial hemorrhage (ICH) were determined after tMCAO. Thrombin generation was indirectly assessed by measuring thrombin/antithrombin III complex. Microvascular patency was evaluated histologically. Cytokine expression and immunoreactivity of cluster of differentiation (CD) 68 were examined to characterize inflammatory processes after pretreatment with DE. BBB integrity was examined by quantifying brain edema. Rats given DE revealed a significant reduction in infarct size without an increase in ICH and significant recovery of neurologic deficits compared to controls. Administration of DE decreased thrombin generation and thrombus formation, dampened the CD68-immunoreactivity and attenuated pro-inflammatory cytokine expression in the cerebral parenchyma ipsilateral to the ischemic lesion. BBB permeability was unaltered following treatment with DE. In summary, prophylactic anticoagulation with DE improves stroke outcome by reducing thrombin-induced inflammation and thrombus formation without increasing the rate of ICH.


Subject(s)
Anticoagulants/therapeutic use , Dabigatran/pharmacology , Stroke/drug therapy , Thrombosis/drug therapy , Animals , Blood Coagulation/drug effects , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/pathology , Cerebral Hemorrhage/drug therapy , Disease Models, Animal , Inflammation/drug therapy , Male , Rats, Wistar , Thrombin/pharmacology
3.
Thromb Haemost ; 115(4): 835-43, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26489881

ABSTRACT

Stroke outcome is more favourable in patients receiving oral anticoagulants compared with non-anticoagulated patients. The reasons for this "stroke-attenuating" property of oral anticoagulants are largely unknown. This study examined whether prestroke anticoagulation with rivaroxaban, a novel direct factor Xa inhibitor, influences stroke severity, thrombin-mediated intracerebral thrombus formation and pro-inflammatory processes in a rat model of brain ischaemia/reperfusion injury. Male Wistar rats were anticoagulated with rivaroxaban and subjected to 90 minutes of transient middle cerebral artery occlusion. Infarct size, functional outcome and the occurrence of intracranial haemorrhage (ICH) were assessed until day 7. Thrombin generation was determined by measuring the amount of thrombin/antithrombin complex. Intracerebral thrombus formation was evaluated by histology and Western blot. CD68-immunoreactivity and the expression of cytokines and adhesion molecules were investigated to assess postischaemic inflammation. The integrity of the blood-brain barrier was analysed using fluorescein isothiocyanate-dextran. Rats pretreated with rivaroxaban developed significantly smaller strokes and less severe functional deficits compared with controls. Although rivaroxaban strongly reduced thrombin-mediated thrombus formation, this was not accompanied by an increased risk of ICH. In addition, rivaroxaban dampened the inflammatory response in the ischaemic brain by downregulating ICAM-1 expression and the activation of CD68+-immune cells. In contrast, rivaroxaban had no effect on the integrity of the blood-brain barrier after stroke. Here, we identified reduced thrombo-inflammation as a major determinant of the stroke-protective property of rivaroxaban in rats. Further studies are needed to assess the therapeutic potential of novel oral anticoagulants in the acute phase after a stroke.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Anticoagulants/therapeutic use , Factor Xa Inhibitors/therapeutic use , Rivaroxaban/therapeutic use , Stroke/drug therapy , Animals , Blood-Brain Barrier/drug effects , Disease Progression , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Lymphocyte Activation , Male , Rats , Rats, Wistar , Thrombin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...