Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(17): 19700-19711, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38708269

ABSTRACT

Miniaturized and microstructured reactors in process engineering are essential for a more decentralized, flexible, sustainable, and resilient chemical production. Modern, additive manufacturing methods for metals enable complex reactor-geometries, increased functionality, and faster design iterations, a clear advantage over classical subtractive machining and polymer-based approaches. Integrated microsensors allow online, in situ process monitoring to optimize processes like the direct synthesis of hydrogen peroxide. We developed a modular tube-in-tube membrane reactor fabricated from stainless steel via 3D printing by laser powder bed fusion of metals (PBF-LB/M). The reactor concept enables the spatially separated dosage and resaturation of two gaseous reactants across a membrane into a liquid process medium. Uniquely, we integrated platinum-based electrochemical sensors for the online detection of analytes to reveal the dynamics inside the reactor. An advanced chronoamperometric protocol combined the simultaneous concentration measurement of hydrogen peroxide and oxygen with monitoring of the sensor performance and self-calibration in long-term use. We demonstrated the highly linear and sensitive monitoring of hydrogen peroxide and dissolved oxygen entering the liquid phase through the membrane. Our measurements delivered important real-time insights into the dynamics of the concentrations in the reactor, highlighting the power of electrochemical sensors applied in process engineering. We demonstrated the stable continuous measurement over 1 week and estimated the sensor lifetime for months in the acidic process medium. Our approach combines electrochemical sensors for process monitoring with advanced, additively manufactured stainless steel membrane microreactors, supporting the power of sensor-equipped microreactors as contributors to the paradigm change in process engineering and toward a greener chemistry.

2.
Molecules ; 29(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38731633

ABSTRACT

In this study, we investigated the catalytic properties of mono- and bimetallic palladium (Pd) and platinum (Pt) nanoparticles deposited via supercritical fluid reactive deposition (SFRD) on titanium dioxide (TiO2) powder. Transmission electron microscopy analyses verified that SFRD experiments performed at 353 K and 15.6 MPa enabled the deposition of uniform mono- and bimetallic nanoparticles smaller than 3 nm on TiO2. Electron-dispersive X-ray spectroscopy demonstrated the formation of alloy-type structures for the bimetallic PdPt nanoparticles. H2O2 is an excellent oxidizing reagent for the production of fine and bulk chemicals. However, until today, the design and preparation of catalysts with high H2O2 selectivity and productivity remain a great challenge. The focus of this study was on answering the questions of (a) whether the catalysts produced are suitable for the direct synthesis of hydrogen peroxide (H2O2) in the liquid phase and (b) how the metal type affects the catalytic properties. It was found that the metal type (Pd or Pt) influenced the catalytic performance strongly; the mean productivity of the mono- and bimetallic catalysts decreased in the following order: Pd > PdPt > Pt. Furthermore, all catalysts prepared by SFRD showed a significantly higher mean productivity compared to the catalyst prepared by incipient wetness impregnation.

3.
Membranes (Basel) ; 12(6)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35736325

ABSTRACT

A higher density of large-angle grain boundaries in palladium membranes promotes hydrogen diffusion whereas small-angle grain boundaries suppress it. In this paper, the microstructure formation in 10 µm thick palladium membranes is tuned to achieve a submicronic grain size above 100 nm with a high density of large-angle grain boundaries. Moreover, changes in the grain boundaries' structure is investigated after exposure to hydrogen at 300 and 500 °C. To attain large-angle grain boundaries in Pd, the coating was performed on yttria-stabilized zirconia/porous Crofer 22 APU substrates (intended for use later in an ultracompact membrane reactor). Two techniques of plasma sprayings were used: suspension plasma spraying using liquid nano-sized powder suspension and vacuum plasma spraying using microsized powder as feedstock. By controlling the process parameters in these two techniques, membranes with a comparable density of large-angle grain boundaries could be developed despite the differences in the fabrication methods and feedstocks. Analyses showed that a randomly oriented submicronic structure could be attained with a very similar grain sizes between 100 and 500 nm which could enhance hydrogen permeation. Exposure to hydrogen for 72 h at high temperatures revealed that the samples maintained their large-angle grain boundaries despite the increase in average grain size to around 536 and 720 nm for vacuum plasma spraying and suspension plasma spraying, respectively.

4.
Membranes (Basel) ; 11(12)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34940408

ABSTRACT

Hydrophobic membranes were characterized at elevated temperatures. Pressure was applied at the feed and permeate side to ensure liquid phase conditions. Within this scope, the applicability of different polymeric and ceramic membranes in terms of liquid entry pressure was studied using water. The Visual Method and the Pressure Step Method were applied for the experimental investigation. The results show the Pressure Step Method to be an early detection method. The tests at higher pressure and temperature conditions using the Pressure Step Method revealed the temperature as being the main factor affecting the liquid entry pressure. Novel LEP data up to 120 °C and 2.5 bar were obtained, which broadens the application range of hydrophobic membranes.

5.
Membranes (Basel) ; 11(7)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34357191

ABSTRACT

The integration of mixed ionic-electronic conducting separation membranes in catalytic membrane reactors can yield more environmentally safe and economically efficient processes. Concentration polarization effects are observed in these types of membranes when O2 permeating fluxes are significantly high. These undesired effects can be overcome by the development of new membrane reactors where mass transport and heat transfer are enhanced by adopting state-of-the-art microfabrication. In addition, careful control over the fluid dynamics regime by employing compact metallic reactors equipped with microchannels could allow the rapid extraction of the products, minimizing undesired secondary reactions. Moreover, a high membrane surface area to catalyst volume ratio can be achieved. In this work, a compact metallic reactor was developed for the integration of mixed ionic-electronic conducting ceramic membranes. An asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3-δ membrane was sealed to the metallic reactor by the reactive air brazing technique. O2 permeation was evaluated as a proof of concept, and the influence of different parameters, such as temperature, sweep gas flow rates and oxygen partial pressure in the feed gas, were evaluated.

6.
ACS Sens ; 6(4): 1583-1594, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33481585

ABSTRACT

Determining local concentrations of the analytes in state-of-the-art microreactors is essential for the development of optimized and safe processes. However, the selective, parallel monitoring of all relevant reactants and products in a multianalyte environment is challenging. Electrochemical microsensors can provide unique information on the reaction kinetics and overall performance of the hydrogen peroxide synthesis process in microreactors, thanks to their high spatial and temporal resolution and their ability to measure in situ, in contrast to other techniques. We present a chronoamperometric approach which allows the selective detection of the dissolved gases hydrogen and oxygen and their reaction product hydrogen peroxide on the same platinum microelectrode in an aqueous electrolyte. The method enables us to obtain the concentration of each analyte using three specific potentials and to subtract interfering currents from the mixed signal. While hydrogen can be detected independently, no potentials can be found for a direct, selective measurement of oxygen and hydrogen peroxide. Instead, it was found that for combined signals, the individual contribution of all analytes superimposes linearly additive. We showed that the concentrations determined from the subtracted signals correlate very well with results obtained without interfering analytes present. For the first time, this approach allowed the mapping of the distribution of the analytes hydrogen, oxygen, and hydrogen peroxide inside a multiphase membrane microreactor, paving the way for online process control.


Subject(s)
Hydrogen Peroxide , Oxygen , Gases , Platinum
7.
Rev Sci Instrum ; 92(12): 124101, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34972445

ABSTRACT

A continuous-flow reactor and a continuous-flow setup compatible with operando x-ray absorption spectroscopy (XAS) were designed for safely studying liquid-phase reactions on solid high atomic number transition metal catalysts (e.g., Au, Pd, and Pt) under pressures up to 100 bars with temperatures up to 100 °C. The reactor has a stainless-steel body, 2 mm thick polyether ether ketone (PEEK) x-ray windows, and a low internal volume of 0.31 ml. The rectangular chamber (6 × 5 × 1 mm3) between the PEEK x-ray windows allows us to perform XAS studies of packed beds or monoliths in the transmission mode at any position in the cell over a length of 60 mm. A 146° wide-angle beam access also allows recording complementary x-ray fluorescence or x-ray diffraction signals. The setup was engineered to continuously feed a single-phase liquid flow saturated with one or more gaseous reactants to the liquid-solid XAS reactor containing no free gas phase for enhanced process safety and sample homogeneity. The proof of concept for the continuous-flow XAS cell and high-pressure setup was provided by operando XAS measurements during the direct synthesis of hydrogen peroxide at room temperature and 40 bars using a 35 ± 5 mg catalyst (1 wt. % Pd/TiO2) and inline near-infrared spectroscopy. The experiments prove that the system is well suited to follow the reaction in the liquid phase while recording high-quality XAS data, paving the way for detailed studies on the catalyst structure and structure-activity relationships.

8.
Chem Soc Rev ; 49(16): 5648-5663, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32720663

ABSTRACT

Heterogeneous catalysis, a process in which the reaction of gaseous or liquid chemical reagents is facilitated at the surface of a solid material, is responsible for the majority of industrial-scale chemical and fuel production reactions. The energy required to drive these reactions has historically been derived from the combustion of non-renewable fossil fuels and carries an unavoidably large carbon footprint. More recently, the development of environmentally responsible and sustainable chemical industries is increasingly motivated by greenhouse gas-induced climate change, thus creating demand for eco-friendly heterogeneous catalytic processes. This includes innovative approaches enabled by renewable forms of energy, such as the electrification of chemical and petrochemical processes, utilization of CO2 as a feedstock and the incorporation of light into catalytic reactions. Herein we review the conversion of solar energy to chemical energy using CO2, and describe how the photophysical and photochemical properties of nanostructured metal oxide photocatalysts have been engineered to efficiently incorporate light into heterogeneous gas-solid CO2 hydrogenation reactions. Realizing high photonic and energy efficiencies in these systems has demanded innovation in not only photocatalyst engineering, but also photoreactor and process engineering. Rather than exclusively providing an in-depth discussion of the chemistry and science within each individual study, this Tutorial Review highlights the multidisciplinary character of photocatalysis studies by covering the four essential components of a typical research work in this field (materials engineering, theoretical modelling, reactor engineering and process development) via case studies of the archetypal indium oxide catalyst materials. Through advances in these four components, progress has been made towards the ultimate goal of industrializing the production of CO2-derived chemicals and fuels.

9.
Langmuir ; 36(29): 8444-8450, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32573239

ABSTRACT

Characterizing the adsorption behavior of thin films at technical operation ranges is highly relevant in order to obtain appropriate experimental parameters, as well as to evaluate their possible integration in multiple applications. Nonetheless, gathering such experimental data is not a trivial task. In the case of metal-organic framework thin films, a particular interesting class of highly porous coatings, determination of adsorption isotherms at elevated temperatures and pressures is not commonly reported. Using a custom-designed langatate crystal microbalance following the principle for piezoelectric microbalances, but under harsher conditions, allowed us to present adsorption equilibrium measurements on a zeolitic imidazolate framework-8 (ZIF-8) surface-mounted metal-organic framework (SURMOF) thin film at temperatures between 35 and 100 °C and at a pressure range up to 10 bars. The layer-by-layer liquid-phase epitaxy approach was used to deposit ZIF-8 SURMOF thin films on langatate crystals. X-ray diffraction, infrared reflection absorption spectroscopy, and scanning electron microscopy combined with energy dispersive X-ray mapping were used to gather deeper information on the ZIF-8 thin film growth. Single-component isotherms were collected for different gases of practical interest, that is, CO2, C2H6, C2H4, C3H8, and C3H6. The measurements were obtained at 35, 50, 75, and 100 °C at a gauge pressure range up to 10 bars. The collected data showed a clear preferential adsorption of ethane over ethylene, whereas only a slight difference was found between propane and propylene. Additionally, the experimental data allowed for the determination of adsorption equilibrium constants and saturation loadings of the ZIF-8 material as a thin SURMOF film, which is of great importance for its integration in multiple applications, such as sensor devices or in membrane-based separation.

10.
Adv Sci (Weinh) ; 6(22): 1902170, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31763158

ABSTRACT

To achieve substantial reductions in CO2 emissions, catalysts for the photoreduction of CO2 into value-added chemicals and fuels will most likely be at the heart of key renewable-energy technologies. Despite tremendous efforts, developing highly active and selective CO2 reduction photocatalysts remains a great challenge. Herein, a metal oxide heterostructure engineering strategy that enables the gas-phase, photocatalytic, heterogeneous hydrogenation of CO2 to CO with high performance metrics (i.e., the conversion rate of CO2 to CO reached as high as 1400 µmol g cat-1 h-1) is reported. The catalyst is comprised of indium oxide nanocrystals, In2O3- x (OH) y , nucleated and grown on the surface of niobium pentoxide (Nb2O5) nanorods. The heterostructure between In2O3- x (OH) y nanocrystals and the Nb2O5 nanorod support increases the concentration of oxygen vacancies and prolongs excited state (electron and hole) lifetimes. Together, these effects result in a dramatically improved photocatalytic performance compared to the isolated In2O3- x (OH) y material. The defect optimized heterostructure exhibits a 44-fold higher conversion rate than pristine In2O3- x (OH) y . It also exhibits selective conversion of CO2 to CO as well as long-term operational stability.

11.
Nat Commun ; 10(1): 1818, 2019 04 30.
Article in English | MEDLINE | ID: mdl-31040282

ABSTRACT

Climate change represents an existential, global threat to humanity, yet its delocalized nature complicates climate action. Here, the authors propose retrofitting air conditioning units as integrated, scalable, and renewable-powered devices capable of decentralized CO2 conversion and energy democratization.

12.
Membranes (Basel) ; 8(4)2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30441750

ABSTRACT

Hydrogen production and storage in small and medium scale, and chemical heat storage from renewable energy, are of great interest nowadays. Micro-membrane reactors for reforming of methane, as well as for the dehydrogenation of liquid organic hydrogen carriers (LOHCs), have been developed. The systems consist of stacked plates with integrated palladium (Pd) membranes. As an alternative to rolled and electroless plated (Pd) membranes, the development of a cost-effective method for the fabrication of Pd membranes by suspension plasma spraying is presented.

13.
Materials (Basel) ; 11(11)2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30380725

ABSTRACT

Surface Plasmon Resonance can be used to activate zinc oxide/copper catalysts in order to perform the carbon dioxide hydrogenation reaction by means of light energy, avoiding high-temperature processes. The synthesis and impregnation methods have been designed to fill glass microreactors with ZnO/Cu nanoparticles supported on transparent silica aerogels to maximize the light absorbed by the catalyst. A LED device surrounding the glass microreactors provided white light to activate the catalyst homogeneously throughout the reactor. Temperature, pressure, amount of catalyst and gases flow were studied as possible variables to enhance the process trying to maximize CO2 conversion rates, achieving the best results working at high pressures. The use of transparent SiO2 Aerogels as supports for photocatalytic gas phase reactions even under high-pressure conditions is demonstrated.

14.
Chem Sci ; 9(13): 3386-3394, 2018 Apr 07.
Article in English | MEDLINE | ID: mdl-29780469

ABSTRACT

Ceria-based catalysts are widely used in oxidation or oxidation-reduction reactions in the field of environmental science. Their catalytic functions are determined by their ability to exchange oxygen species with oxidants. The enhancement of oxygen release is desired since it is often the rate-determining step in redox cycles. Herein, we developed a lattice oxygen distortion method to enhance oxygen activation by quenching the Ce-Zr oxide nanoparticles formed from an extremely high temperature. This process can ensure the formation of solid solutions as well as avoiding atomic rearrangement during calcination, retaining the lattice oxygen at a metastable and disordered state without vacancies. Reduction, vacuum or metal deposition will easily induce oxygen release accompanied by vacancy creation. The metastable oxides can provide about 19 times more oxygen vacancies than traditional ones in a CO atmosphere. CO oxidation rates increased with increasing Zr content from 25 to 75% and achieved a new level, which is attributed to the acceleration of oxygen circulation via promoting oxygen release and supplying plenty of oxygen vacancies for redox cycles. This strategy is expected to be applied in the design and fabrication of improved oxygen storage materials.

15.
ACS Appl Mater Interfaces ; 10(2): 1662-1671, 2018 Jan 17.
Article in English | MEDLINE | ID: mdl-29256594

ABSTRACT

Two approaches of engineering surface structures of V-Ti-based solid solution hydrogen storage alloys are presented, which enable improved tolerance toward gaseous oxygen (O2) impurities in hydrogen (H2) gas. Surface modification is achieved through engineering lanthanum (La)- or nickel (Ni)-rich surface layers with enhanced cyclic stability in an H2/O2 mixture. The formation of a Ni-rich surface layer does not improve the cycling stability in H2/O2 mixtures. Mischmetal (Mm, a mixture of La and Ce) agglomerates are observed within the bulk and surface of the alloy when small amounts of this material are added during arc melting synthesis. These agglomerates provide hydrogen-transparent diffusion pathways into the bulk of the V-Ti-Cr-Fe hydrogen storage alloy when the remaining oxidized surface is already nontransparent for hydrogen. Thus, the cycling stability of the alloy is improved in an O2-containing hydrogen environment as compared to the same alloy without addition of Mm. The obtained surface-engineered storage material still absorbs hydrogen after 20 cycles in a hydrogen-oxygen mixture, while the original material is already deactivated after 4 cycles.

16.
J Am Chem Soc ; 139(23): 7855-7863, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28494591

ABSTRACT

A Cu/ZnO/Al2O3@ZSM-5 core@shell catalyst active for one-step conversion of synthesis gas to dimethyl ether (DME) was imaged simultaneously and in situ using synchrotron-based micro X-ray fluorescence (µ-XRF), X-ray diffraction (µ-XRD), and scanning transmission X-ray microscopy (STXM) computed tomography (CT) with micrometer spatial resolution. An identical sample volume was imaged stepwise, first under oxidizing and reducing atmospheres (imitating calcination and activation processes), and then under model reaction conditions for DME synthesis (H2:CO:CO2 ratio of 16:8:1, up to 250 °C). The multimodal imaging methods offered insights into the active metal structure and speciation within the catalyst, and allowed imaging of both the catalyst core and zeolite shell in a single acquisition. Dispersion of nanosized Cu species was observed in the catalyst core during reduction, with formation of a metastable Cu+ phase at the core-shell interface. Under DME reaction conditions at 1 bar, the coexistence of Cu0 in the active catalyst core together with partially oxidized Cu species was unraveled. The zeolite shell and core-shell interface remained stable under all conditions, preserving the bifunctional nature of the catalyst. These observations are inaccessible using standard bulk techniques like X-ray absorption spectroscopy (XAS) and XRD, demonstrating the potential of multimodal in situ X-ray CT for characterization of hierarchically designed materials, which stand to benefit tremendously from such 3D spatially resolved measurements.

17.
ChemCatChem ; 9(1): 17-29, 2017 01 09.
Article in English | MEDLINE | ID: mdl-28239429

ABSTRACT

In the future, (electro-)chemical catalysts will have to be more tolerant towards a varying supply of energy and raw materials. This is mainly due to the fluctuating nature of renewable energies. For example, power-to-chemical processes require a shift from steady-state operation towards operation under dynamic reaction conditions. This brings along a number of demands for the design of both catalysts and reactors, because it is well-known that the structure of catalysts is very dynamic. However, in-depth studies of catalysts and catalytic reactors under such transient conditions have only started recently. This requires studies and advances in the fields of 1) operando spectroscopy including time-resolved methods, 2) theory with predictive quality, 3) kinetic modelling, 4) design of catalysts by appropriate preparation concepts, and 5) novel/modular reactor designs. An intensive exchange between these scientific disciplines will enable a substantial gain of fundamental knowledge which is urgently required. This concept article highlights recent developments, challenges, and future directions for understanding catalysts under dynamic reaction conditions.

18.
J Vis Exp ; (114)2016 08 25.
Article in English | MEDLINE | ID: mdl-27585356

ABSTRACT

We present a high-temperature and high-pressure gas adsorption measurement device based on a high-frequency oscillating microbalance (5 MHz langatate crystal microbalance, LCM) and its use for gas adsorption measurements in zeolite H-ZSM-5. Prior to the adsorption measurements, zeolite H-ZSM-5 crystals were synthesized on the gold electrode in the center of the LCM, without covering the connection points of the gold electrodes to the oscillator, by the steam-assisted crystallization (SAC) method, so that the zeolite crystals remain attached to the oscillating microbalance while keeping good electroconductivity of the LCM during the adsorption measurements. Compared to a conventional quartz crystal microbalance (QCM) which is limited to temperatures below 80 °C, the LCM can realize the adsorption measurements in principle at temperatures as high as 200-300 °C (i.e., at or close to the reaction temperature of the target application of one-stage DME synthesis from the synthesis gas), owing to the absence of crystalline-phase transitions up to its melting point (1,470 °C). The system was applied to investigate the adsorption of CO2, H2O, methanol and dimethyl ether (DME), each in the gas phase, on zeolite H-ZSM-5 in the temperature and pressure range of 50-150 °C and 0-18 bar, respectively. The results showed that the adsorption isotherms of these gases in H-ZSM-5 can be well fitted by Langmuir-type adsorption isotherms. Furthermore, the determined adsorption parameters, i.e., adsorption capacities, adsorption enthalpies, and adsorption entropies, compare well to literature data. In this work, the results for CO2 are shown as an example.


Subject(s)
Adsorption , Zeolites/chemistry , Crystallization , Gold , Hot Temperature
19.
ACS Appl Mater Interfaces ; 8(22): 13993-4003, 2016 Jun 08.
Article in English | MEDLINE | ID: mdl-27183004

ABSTRACT

A study of the reactions of liquid acetone and toluene on transition metal hydrides, which can be used in thermal energy or hydrogen storage applications, is presented. Hydrogen is confined in TiFe, Ti0.95Zr0.05Mn1.49V0.45Fe0.06 ("Hydralloy C5"), and V40Fe8Ti26Cr26 after contact with acetone. Toluene passivates V40Fe8Ti26Cr26 completely for hydrogen desorption while TiFe is only mildly deactivated and desorption is not blocked at all in the case of Hydralloy C5. LaNi5 is inert toward both organic liquids. Gas chromatography (GC) investigations reveal that CO, propane, and propene are formed during hydrogen desorption from V40Fe8Ti26Cr26 in liquid acetone, and methylcyclohexane is formed in the case of liquid toluene. These reactions do not occur if dehydrogenated samples are used, which indicates an enhanced surface reactivity during hydrogen desorption. Significant amounts of carbon-containing species are detected at the surface and subsurface of acetone- and toluene-treated V40Fe8Ti26Cr26 by X-ray photoelectron spectroscopy (XPS). The modification of the surface and subsurface chemistry and the resulting blocking of catalytic sites is believed to be responsible for the containment of hydrogen in the bulk. The surface passivation reactions occur only during hydrogen desorption of the samples.

20.
Faraday Discuss ; 183: 249-59, 2015.
Article in English | MEDLINE | ID: mdl-26392210

ABSTRACT

A novel plasmonic reactor concept is proposed and tested to work as a visible energy harvesting device while allowing reactions to transform CO2 to be carried out. Particularly the reverse water gas shift (RWGS) reaction has been tested as a means to introduce renewable energy into the economy. The development of the new reactor concept involved the synthesis of a new composite capable of plasmonic activation with light, the development of an impregnation method to create a single catalyst reactor entity, and finally the assembly of a reaction system to test the reaction. The composite developed was based on a Cu/ZnO catalyst dispersed into transparent aerogels. This allows efficient light transmission and a high surface area for the catalyst. An effective yet simple impregnation method was developed that allowed introduction of the composites into glass microchannels. The activation of the reaction was made using LEDs that covered all the sides of the reactor allowing a high power delivery. The results of the reaction show a stable process capable of low temperature transformations.

SELECTION OF CITATIONS
SEARCH DETAIL
...