Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci Health B ; 59(8): 448-482, 2024.
Article in English | MEDLINE | ID: mdl-38840338

ABSTRACT

Within the realm of poultry feed mill operations, the persistent concern over microbial feed quality necessitates the establishment of a robust baseline for enhancing and sustaining the standards of commercial feeds. This dual-phase investigation, comprising Parts I, was previously published, and the current study presented here as Part II aimed to illuminate this baseline using 16S rRNA gene sequencing. In Part II, nine distinct commercial poultry feeds formulated as starters, growers, starter/growers, or supplements, the selected feeds underwent genomic DNA extraction, amplification with custom dual-indexed primers, and subsequent Illumina MiSeq sequencing. Through data analysis in QIIME2-2021.4 and R Studio, the study unveils alpha (Kruskal-Wallis) and beta (ANOSIM) diversity, taxonomic differences (ANCOM), and core microbiomes (core_members), deeming main and pairwise effects statistically significant at p < 0.05 and Q < 0.05. Notably, the investigation identified 30% common core microbial members across the nine feed types, shedding light on potential foodborne poultry pathogens such as Helicobacter and Campylobacter. Probiotic-associated feeds exhibited distinct microbial communities, emphasizing the need to explore their impact on the early poultry gastrointestinal tract (GIT) further.


Subject(s)
Animal Feed , Poultry , RNA, Ribosomal, 16S , Animals , Animal Feed/analysis , Poultry/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Chickens/microbiology , Microbiota
2.
J Environ Sci Health B ; 59(7): 378-389, 2024.
Article in English | MEDLINE | ID: mdl-38779902

ABSTRACT

Given extensive variability in feed composition, the absence of a dedicated DNA extraction kit for poultry feed underscores the need for an optimized extraction technique for reliable downstream sequencing analyses. This study investigates the impact of five DNA extraction techniques: Qiagen QIAamp DNA Stool Mini Kit (Qiagen), modified Qiagen with Lysing Matrix B (MQ), modified Qiagen with celite purification (MQC), polyethylene glycol (PEG), and 1-Day Direct. Genomic DNA amplification and Illumina MiSeq sequencing were conducted. QIIME2-2021.4 facilitated data analysis, revealing significant diversity and compositional differences influenced by extraction methods. Qiagen exhibited lower evenness and richness compared to other methods. 1-Day Direct and PEG enhanced bacterial diversities by employing bead beating and lysozyme. Despite similar taxonomic resolution, the Qiagen kit provides a rapid, consistent method for assessing poultry feed microbiomes. Modified techniques (MQ and MQC) improve DNA purification, reducing bias in commercial poultry feed samples. PEG and 1-Day Direct methods were effective but may require standardization. Overall, this study underscores the importance of optimized extraction techniques in poultry feed analysis, with potential implications for future standardization of effective methods.


Subject(s)
Animal Feed , DNA, Bacterial , Microbiota , Poultry , Animal Feed/analysis , Animals , Poultry/microbiology , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Chickens/microbiology
3.
PLoS One ; 19(5): e0303856, 2024.
Article in English | MEDLINE | ID: mdl-38787822

ABSTRACT

This study investigates the impact of casein hydrolysates on the poultry ceca inoculated with Campylobacter focusing on microbial molecular preferences for different protein sources in the presence of Campylobacter jejuni. Three casein sources (intact casein (IN), casein enzyme hydrolysate (EH), and casein acid hydrolysate (AH)) were introduced to cecal contents in combination with inoculated C. jejuni in an in vitro model system incubated for 48 h at 42°C under microaerophilic conditions. Samples were collected at 0, 24, and 48 h. Genomic DNA was extracted and amplified using custom dual-indexed primers, followed by sequencing on an Illumina MiSeq platform. The obtained sequencing data were then analyzed via QIIME2-2021.11. Metabolite extracts were analyzed with ultra-high-performance liquid orbitrap chromatography-mass spectrometry (UHPLC-MS). Statistical analysis of metabolites was conducted using MetaboAnalyst 5.0, while functional analysis was performed using Mummichog 2.0 with a significance threshold set at P < 0.00001. DNA sequencing and metabolomic analyses revealed that C. jejuni was most abundant in the EH group. Microbial diversity and richness improved in casein supplemented groups, with core microbial differences observed, compared to non-supplemented groups. Vitamin B-associated metabolites significantly increased in the supplemented groups, displaying distinct patterns in vitamin B6 and B9 metabolism between EH and AH groups (P < 0.05). Faecalibacterium and Phascolarctobacterium were associated with AH and EH groups, respectively. These findings suggest microbial interactions in the presence of C. jejuni and casein supplementation are influenced by microbial community preferences for casein hydrolysates impacting B vitamin production and shaping competitive dynamics within the cecal microbial community. These findings underscore the potential of nutritional interventions to modulate the poultry GIT microbiota for improved health outcomes.


Subject(s)
Campylobacter jejuni , Caseins , Cecum , Metabolome , Campylobacter jejuni/drug effects , Campylobacter jejuni/metabolism , Animals , Cecum/microbiology , Cecum/metabolism , Cecum/drug effects , Caseins/metabolism , Metabolome/drug effects , Chickens/microbiology , Gastrointestinal Microbiome/drug effects , Poultry/microbiology
4.
J Environ Sci Health B ; 58(12): 711-717, 2023.
Article in English | MEDLINE | ID: mdl-37897369

ABSTRACT

Foodborne pathogen Campylobacter jejuni has been associated with ruminants. The objectives of this experiment were to determine C. jejuni survivability in mixed in vitro rumen microbial populations and the impact on methane production with or without methane inhibitors 2-bromosulfonate (BES) and/or sodium nitrate. When inoculated into rumen microbial populations without or with 0.5 mM BES, 5.0 mM nitrate or their combination, C. jejuni viability decreased from 4.7 ± 0.1 log10 colony forming units (CFU)/mL after 24 h. Loss of C. jejuni viability was greater (P < 0.05) when incubated under 100% CO2 compared to 50% H2:50% CO2, decreasing 1.46 versus 1.15 log units, respectively. C. jejuni viability was also decreased (P < 0.05) by more than 0.43 log units by the anti-methanogen treatments. Rumen microbial populations produced less methane (P = 0.05) when incubated with than without C. jejuni regardless of whether under 100% CO2 or 50% H2:50% CO2. For either gas phase, nitrate was decreased (13.2 versus 37.9%) by the anti-methanogen treatments versus controls although not always significant. C. jejuni-inoculated populations metabolized 16.4% more (P < 0.05) nitrate under H2:CO2 versus 100% CO2. Apparently, C. jejuni can compete for H2 with methanogens but has limited survivability under rumen conditions.


Subject(s)
Campylobacter jejuni , Animals , Cattle , Campylobacter jejuni/metabolism , Nitrates/pharmacology , Nitrates/metabolism , Carbon Dioxide/metabolism , Methane/metabolism , Rumen
5.
Poult Sci ; 101(2): 101409, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34953376

ABSTRACT

Salmonella Infantis has been the etiological agent of numerous foodborne outbreaks of nontyphoidal Salmonella. Consequently, there is an emergent need to mitigate Salmonella Infantis among poultry. Thus, this study evaluated the efficacy of cetylpyridinium chloride (CPC) versus peroxyacetic acid (PAA), on bone-in, skin-on chicken thighs for the reduction of Salmonella and changes in the microbiota. Exactly 100 skin-on, bone-in chicken thighs (2 trials, 0 and 24 h, k = 5, n = 5, N = 50) were inoculated with 108 CFU/mL of a nalidixic acid resistant strain of S. Infantis for an attachment of 106 CFU/g. Thighs were treated with 20 s part dips (350 mL): a no inoculum, no treatment control (NINTC); no treatment control (NTC); tap water (TW); TW+CPC; TW+PAA. Following treatment, thighs were rinsed in 150 mL of nBPW, and rinsates were collected. Rinsates were spot plated for Salmonella and aerobic bacteria (APC). Log10 transformed counts were analyzed using a mixed-effects model (random effect = trial) with means separated using Tukey's HSD (P ≤ 0.05). The genomic DNA of rinsates was extracted, and the 16S rDNA was sequenced on an Illumina MiSeq. Microbiota data were analyzed using QIIME2, with data considered significant at P ≤ 0.05 (main effects) and Q≤0.05 (pairwise differences). Treatment × time interactions were observed for both Salmonella and APC (P < 0.05). The treatment of thighs with PAA and CPC reduced Salmonella and APC in respect to the controls. Numerically, thighs treated with CPC had less Salmonella (4.29 log10CFU/g) and less APC (4.56 log10CFU/g) at 24 h than all other treatments (P > 0.05). Differences in diversity metrics were not consistently observed between treatments; however, in trial 2, the NTC treated thighs were different than those treated with CPC (P < 0.05; Q < 0.05). In both trials, ANCOM, the analysis of microbiome compositional profiles, revealed shifts at both the phylum and order levels with thighs being different in the relative abundances of Proteobacteria (P < 0.05). In conclusion, treatment of skin-on poultry parts with CPC may reduce the risk of foodborne outbreaks caused by Salmonella Infantis.


Subject(s)
Chickens , Microbiota , Animals , Cetylpyridinium/pharmacology , Food Microbiology , Salmonella , Thigh
6.
Poult Sci ; 100(12): 101476, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34710711

ABSTRACT

After being banned by the European Commission in 2018, the use of formaldehyde as a feed amendment in the United States has come into question. Therefore, this study was conducted to explore alternatives to formaldehyde, such as formic acid and monoglycerides, and their effects on poultry production. In total, 1,728 Cobb 700 broilers were randomly assigned to 96-floor pens on day of hatch (18 birds/pen). Using a randomized complete block design (4 blocks), treatments were assigned to pens with blocking based on location within the barn, with the eastern half of the barn designated for digestibility and the western half designated for production (per experiment: 8 control pens and 10 pens per treatment). All diets were based on a negative control (NC), basal diet. Dietary treatments consisted of: NC, NC + 0.25% formalin (F), NC + 0.25 and 0.50% Amasil NA (AML and AMH; 61% formic acid and 20.5% Na-formate), and NC + SILO Health 104L (SILO; mixture of monoglycerides; 0.5% from 0 to 14 d, 0.4% from 14 to 28 d, and 0.2% from 28 to 42 d). Water and feed were provided ad libitum. Performance data were collected during feed changes on d 0, 14, 28, and 42, with digestibility data collected at d 14 (2 per pen) and carcass quality (6 per pen) assessed at d 46 with a randomly selected group of broilers. A one-way ANOVA followed by Dunnett's multiple comparison, where treatments were evaluated against F were conducted using JMP 14.0 (P ≤ 0.05). Main effect of treatment was significant for performance, nutrient digestibility, and carcass quality. Differences in body weight and ADG were observed from d 14 to d 28, resulting in a trending improvement in lysine digestibility on d 14 and carcass quality on d 46 of birds fed AML and AMH in comparison to those fed F (P < 0.05). Whereas birds fed SILO had reduced digestibility of methionine on d 14 and a decrease in meat quality on d 46 in comparison to those fed F (P < 0.05). Therefore, Amasil NA at 0.25 or 0.50% may be an effective alternative to formaldehyde as a feed amendment for poultry production.


Subject(s)
Animal Feed , Chickens , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dietary Supplements , Formaldehyde , Formates , Meat , Monoglycerides , Nutrients , Random Allocation
7.
Poult Sci ; 99(12): 6997-7003, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33248616

ABSTRACT

Peroxyacetic acid (PAA) has become an important component of pathogen reduction in poultry processing, but there are potential concerns for continued exposure. The objective was to evaluate the effects of PAA and Amplon (AMP) used alone or in the combination. Bone-in tom turkey drumsticks (N = 100, n = 10, k = 5, 0 and 24 h) per study were obtained and inoculated with either nalidixic acid-resistant Salmonella Typhimurium or Salmonella Reading (64 µg/mL). The inocula were allowed to adhere to the drums at 4°C for 60 min for a final attachment of 108 and 107 cfu/g per S. Typhimurium and S. Reading, respectively. Drumsticks were treated with a no-treatment control; tap water, pH 8.5 (TW); TW+500 ppm PAA, pH 3.5 (PAA); TW+500 ppm AMP, pH 1.3 (AMP); TW + PAA + AMP (PAA + AMP). Treatments were applied as short duration dips (30 s) and allowed to drip for 2 min. After treatment, drums were stored at 4°C until microbial analyses at 0 and 24 h. Drums were rinsed in neutralizing buffered peptone water and spot plated for total aerobes and Salmonella. Bacterial counts were log10 transformed and analyzed using n-way ANOVA. All treatments reduced S. Reading on turkey legs at both 0 and 24 h (P < 0.0001; P < 0.0001). At 24 h, drums treated with PAA + AMP (3.92 log10 cfu/g) had less S. Reading than no-treatment control, TW, and AMP. Treatment by time interactions were observed for total aerobes among drums in both studies (P < 0.0001, P < 0.0001) and Salmonella among drums inoculated with S. Typhimurium (P < 0.0001). During the S. Reading and S. Typhimurium study, all treatments reduced Salmonella and total aerobes on drums. During the S. Typhimurium study, drums treated with PAA + AMP had the lowest numerical load of S. Typhimurium and total aerobes. The combination of AMP + PAA may exhibit a synergistic effect in reducing Salmonella on turkey drums, thus increasing the safety of turkey products for consumers.


Subject(s)
Food Microbiology , Meat , Nalidixic Acid , Peracetic Acid , Salmonella , Turkeys , Animals , Anti-Bacterial Agents/pharmacology , Colony Count, Microbial/veterinary , Meat/microbiology , Nalidixic Acid/pharmacology , Peracetic Acid/pharmacology , Salmonella/drug effects , Salmonella typhimurium/drug effects
8.
J Environ Sci Health B ; 55(5): 447-454, 2020.
Article in English | MEDLINE | ID: mdl-31941390

ABSTRACT

The genome of Acidiphilium multivorum strain AIU 301, acidophilic, aerobic Gram-negative bacteria, was investigated for potential metabolic pathways associated with organic acid production and metal uptake. The genome was compared to other acidic mine drainage isolates, Acidiphilium cryptum JF-5 and Acidithiobacillus ferrooxidans ATCC 23270, as well as Acetobacter pasteurianus 386B, which ferments cocoa beans. Plasmids between two Acidiphilium spp. were compared, and only two of the sixteen plasmids were identified as potentially similar. Comparisons of the genome size to the number of protein coding sequences indicated that A. multivorum and A. cryptum follow the line of best fit unlike A. pasteurianus 386B, which suggests that it was improperly annotated in the database. Pathways between these four species were analyzed bioinformatically and are discussed here. A. multivorum AIU 301, shares pathways with A. pasteurianus 386B including aldehyde and alcohol dehydrogenase pathways, which are used in the generation of vinegar. Mercury reductase, arsenate reductase and sulfur utilization proteins were identified and discussed at length. The absence of sulfur utilization proteins from A. multivorum AIU 301 suggests that this species uses previously undefined pathways for sulfur acquisition. Bioinformatic examination revealed novel pathways that may benefit commercial fields including acetic acid production and biomining.


Subject(s)
Acetic Acid/metabolism , Acidiphilium/genetics , Genome, Bacterial , Acidiphilium/metabolism , Arsenate Reductases/genetics , Computational Biology , Computer Simulation , Genome Size , Metabolic Networks and Pathways/genetics , Metals/metabolism , Mining , Oxidoreductases/genetics , Plasmids , Sulfur/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...