Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Chem ; 46(1): 30-5, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18098229

ABSTRACT

The growing importance of solid-phase peptide synthesis (SPPS) has necessitated the development of spectroscopic experiments that can be used to obtain structural and conformational information on resin-bound peptides. Despite the utility of two-dimensional high-resolution magic angle spinning (HRMAS) NMR experiments that provide homonuclear shift correlations, experiments that provide heteronuclear shift correlations are necessary for complex conformational and structural elucidatory problems. Here we report the optimization and implementation of non-gradient inverse NMR experiments for acquiring the 1H-13C shift correlations of resin-bound peptides. The use of non-gradient experiments is advantageous as many magic angle spinning (MAS) probes do not possess gradient coils. An HRMAS BIRD-HMQC experiment with a reduced 1JCH constant has proven very suitable for obtaining one-bond correlations. Long-range correlations can be interpolated by using a non-gradient HRMAS CT-HMBC-1 experiment where the resulting data is processed with forward linear prediction. It has been shown that removing the effects of 1H-1H J-modulation is crucial in order to view cross peaks that correspond to long-range correlations. Additionally, both experiments prove extremely useful over routine one-dimensional 13C HRMAS experiments for extracting carbon chemical shift data. The non-gradient HRMAS BIRD-HMQC and CT-HMBC-1 experiments can be used to assist in conformational analysis and to identify and deconvolute situations where accidental equivalence and seemingly correlated isochronous signals arise.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Oligopeptides/chemical synthesis , Carbon , Hydrogen , Oligopeptides/chemistry , Phase Transition , Protein Conformation
2.
Phys Rev Lett ; 99(22): 220501, 2007 Nov 30.
Article in English | MEDLINE | ID: mdl-18233272

ABSTRACT

We demonstrate coherent control of two logical qubits encoded in a decoherence free subspace (DFS) of four dipolar-coupled protons in an NMR quantum information processor. A pseudopure fiducial state is created in the DFS, and a unitary logical qubit entangling operator evolves the system to a logical Bell state. The four-spin molecule is partially aligned by a liquid crystal solvent, which introduces strong dipolar couplings among the spins. Although the system Hamiltonian is never fully specified, we demonstrate high fidelity control over the logical degrees of freedom. In fact, the DFS encoding leads to higher fidelity control than is available in the full four-spin Hilbert space.

SELECTION OF CITATIONS
SEARCH DETAIL
...