Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Chem Mater ; 35(6): 2330-2341, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-38616973

ABSTRACT

Spinel compounds AB2X4 consist of both tetrahedral (AX4) and octahedral (BX6) environments with the former forming a diamond lattice and the latter a geometrically frustrated pyrochlore lattice. Exploring the fascinating physical properties and their correlations with structural features is critical in understanding these materials. FeMn2O4 has been reported to exhibit one structural transition and two successive magnetic transitions. Here, we report the polyhedral distortions and their correlations to the structural and two magnetic transitions in FeMn2O4 by employing the high-resolution neutron powder diffraction. The cation distribution is found to be (Mn0.92+Fe0.13+)A(Mn3+Fe0.93+Mn0.12+)BO4. While large trigonal distortion is found even in the high-temperature cubic phase, the first-order cubic-tetragonal structural transition associated with the elongation of both tetrahedra and octahedra with shared oxygen atoms along the c axis occurs at TS ≈ 750 K, driven by the Jahn-Teller effect of the orbital active B-site Mn3+ cation. Strong magnetoelastic coupling is unveiled at TN1 ≈ 400 K as manifested by the appearance of Néel-type collinear ferrimagnetic order, an anomaly in both tetrahedral and octahedral distortions, as well as an anomalous decrease of the lattice constants c and a weak anomaly of a. Upon cooling to TN2 ≈ 65 K, it evolves to a noncollinear ferrimagnetic order accompanied by the different moments at the split magnetic sites B1 and B2. Only one-half of the B-site Mn3+/Fe3+ spins, i.e., the B2-site spins in the pyrochlore lattice, are canted, which is a unique magnetic order among spinels. The canting angle between A-site and B2-site moments is ∼25°, but the B1-site moment stays antiparallel to the A-site moment even at 10 K. This noncollinear order is accompanied by a modification of the O-B-O bond angles in the octahedra without significant change in lattice constants or tetrahedral/octahedral distortion parameters, indicating a distinct magnetoelastic coupling. We demonstrate distinct roles of the A-site and B-site magnetic cations in the structural and magnetic properties of FeMn2O4. Our study indicates that FeMn2O4 is a wonderful platform to unveil interesting magnetic order and to investigate their correlations with polyhedral distortions and lattice.

2.
J Phys Condens Matter ; 33(3)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33078715

ABSTRACT

The layered transition-metal dichalcogenide PdTe2has been discovered to possess bulk Dirac points as well as topological surface states. By measuring the magnetization (up to 7 T) and magnetic torque (up to 35 T) in single crystalline PdTe2, we observe distinct de Haas-van Alphen (dHvA) oscillations. Eight frequencies are identified withH||c, with two low frequencies (Fα= 8 T andFß= 117 T) dominating the spectrum. The effective masses obtained by fitting the Lifshitz-Kosevich (LK) equation to the data aremα*=0.059m0andmß*=0.067m0wherem0is the free electron mass. The corresponding Landau fan diagrams allow the determination of the Berry phase for these oscillations resulting in values of ∼0.67πfor the 3D α band (hole-type) (down to the 1st Landau level) and ∼0.23π-0.73πfor the 3D ß band (electron-type) (down to the 3rd Landau level). By investigating the angular dependence of the dHvA oscillations, we find that the frequencies and the corresponding Berry phase (ΦB) vary with the field direction, with a ΦB∼ 0 whenHis 10°-30° away from theabplane for both α and ß bands. The multiple band nature of PdTe2is further confirmed from Hall effect measurements.

3.
Phys Rev B ; 1022020 Dec.
Article in English | MEDLINE | ID: mdl-38450057

ABSTRACT

We use neutron scattering to investigate spin excitations in Sr(Co1-xNix)2As2, which has a c-axis incommensurate helical structure of the two-dimensional (2D) in-plane ferromagnetic (FM) ordered layers for 0.013⩽x⩽0.25. By comparing the wave vector and energy dependent spin excitations in helical ordered Sr(Co0.9Ni0.1)2As2 and paramagnetic SrCO2As2, we find that Ni doping, while increasing lattice disorder in Sr(Co1-xNix)2As2, enhances quasi-2D FM spin fluctuations. However, our band structure calculations within the combined density functional theory and dynamic mean field theory (DFT+DMFT) failed to generate a correct incommensurate wave vector for the observed helical order from nested Fermi surfaces. Since transport measurements reveal increased in-plane and c-axis electrical resistivity with increasing Ni doping and associated lattice disorder, we conclude that the helical magnetic order in Sr(Co1-xNix)2As2 may arise from a quantum order-by-disorder mechanism through the itinerant electron mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions.

4.
Langmuir ; 35(44): 14248-14257, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31644297

ABSTRACT

Particles with a superparamagnetic cobalt inner core, silica outer core, and covalently bound homopolypeptide shell were investigated under thermal and magnetic stimuli. The homopolypeptide was poly(ε-carbobenzyloxy-l-lysine), PCBL, which is known to exhibit a thermoreversible coil ⇔ helix transition when dissolved as a pure polymer in m-cresol. Tethering to a core particle did not prevent PCBL from undergoing this conformational transition, as confirmed by dynamic light scattering and optical rotation, but the transition was broadened compared to that of the untethered polymer. The Co@SiO2-PCBL hybrid particles retained the superparamagnetic properties of the cobalt inner nougat. Indeed, some response remains even after aging for >5 years. The aged PCBL shell also preserved its responsiveness to temperature, although differences in the shape of the size vs temperature transition curve were observed compared to the freshly made particles. A reversible coil ⇔ helix transition for a particle-bound polypeptide in a pure organic solvent is rare. In addition to providing a convenient tool for characterizing coil ⇔ helix transitions for surface-bound polypeptides without interference from pH or the strong ionic forces that dominate behavior in aqueous systems, the Co@SiO2-PCBL/m-cresol system may prove useful in studies of the effect of shell polymer conformation on colloid interactions. The stability of the magnetic core and polypeptide shell suggest a long shelf life for Co@SiO2-PCBL, which can, in principle, be deprotected to yield positively charged Co@SiO2-poly(l-lysine) particles for possible transfection or antimicrobial applications or chained magnetically to produce responsive poly(colloids).

5.
Sci Rep ; 8(1): 5225, 2018 Mar 27.
Article in English | MEDLINE | ID: mdl-29588462

ABSTRACT

Due to its cooperative nature, magnetic ordering involves a complex interplay between spin, charge, and lattice degrees of freedom, which can lead to strong competition between magnetic states. Binary Fe3Ga4 is one such material that exhibits competing orders having a ferromagnetic (FM) ground state, an antiferromagnetic (AFM) behavior at intermediate temperatures, and a conspicuous re-entrance of the FM state at high temperature. Through a combination of neutron diffraction experiments and simulations, we have discovered that the AFM state is an incommensurate spin-density wave (ISDW) ordering generated by nesting in the spin polarized Fermi surface. These two magnetic states, FM and ISDW, are seldom observed in the same material without application of a polarizing magnetic field. To date, this unusual mechanism has never been observed and its elemental origins could have far reaching implications in many other magnetic systems that contain strong competition between these types of magnetic order. Furthermore, the competition between magnetic states results in a susceptibility to external perturbations allowing the magnetic transitions in Fe3Ga4 to be controlled via temperature, magnetic field, disorder, and pressure. Thus, Fe3Ga4 has potential for application in novel magnetic memory devices, such as the magnetic components of tunneling magnetoresistance spintronics devices.

6.
Nat Mater ; 16(9): 905-910, 2017 09.
Article in English | MEDLINE | ID: mdl-28740190

ABSTRACT

Weyl (WSMs) evolve from Dirac semimetals in the presence of broken time-reversal symmetry (TRS) or space-inversion symmetry. The WSM phases in TaAs-class materials and photonic crystals are due to the loss of space-inversion symmetry. For TRS-breaking WSMs, despite numerous theoretical and experimental efforts, few examples have been reported. In this Article, we report a new type of magnetic semimetal Sr1-yMn1-zSb2 (y, z < 0.1) with nearly massless relativistic fermion behaviour (m∗ =  0.04 - 0.05m0, where m0 is the free-electron mass). This material exhibits a ferromagnetic order for 304 K  <  T  <  565 K, but a canted antiferromagnetic order with a ferromagnetic component for T  <  304 K. The combination of relativistic fermion behaviour and ferromagnetism in Sr1-yMn1-zSb2 offers a rare opportunity to investigate the interplay between relativistic fermions and spontaneous TRS breaking.

7.
Inorg Chem ; 51(2): 920-7, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22206264

ABSTRACT

LnCu(2)(Al,Si)(5) (Ln = La and Ce) were synthesized and characterized. These compounds adopt the SrAu(2)Ga(5) structure type and crystallize in the tetragonal space group P4/mmm with unit cell dimensions of a ≈ 4.2 Å and c ≈ 7.9 Å. Herein, we report the structure as obtained from single crystal X-ray diffraction. Additionally, we report the magnetic susceptibility, magnetization, resistivity, and specific heat capacity data obtained for polycrystalline samples of LnCu(2)(Al,Si)(5) (Ln = La and Ce).

8.
Nature ; 454(7207): 976-80, 2008 Aug 21.
Article in English | MEDLINE | ID: mdl-18719585

ABSTRACT

Landau-Fermi liquid theory, with its pivotal assertion that electrons in metals can be simply understood as independent particles with effective masses replacing the free electron mass, has been astonishingly successful. This is true despite the Coulomb interactions an electron experiences from the host crystal lattice, lattice defects and the other approximately 10(22) cm(-3) electrons. An important extension to the theory accounts for the behaviour of doped semiconductors. Because little in the vast literature on materials contradicts Fermi liquid theory and its extensions, exceptions have attracted great attention, and they include the high-temperature superconductors, silicon-based field-effect transistors that host two-dimensional metals, and certain rare-earth compounds at the threshold of magnetism. The origin of the non-Fermi liquid behaviour in all of these systems remains controversial. Here we report that an entirely different and exceedingly simple class of materials-doped small-bandgap semiconductors near a metal-insulator transition-can also display a non-Fermi liquid state. Remarkably, a modest magnetic field functions as a switch which restores the ordinary disordered Fermi liquid. Our data suggest that we have found a physical realization of the only mathematically rigorous route to a non-Fermi liquid, namely the 'undercompensated Kondo effect', where there are too few mobile electrons to compensate for the spins of unpaired electrons localized on impurity atoms.

9.
Phys Rev Lett ; 100(1): 017209, 2008 Jan 11.
Article in English | MEDLINE | ID: mdl-18232818

ABSTRACT

Critical points that can be suppressed to zero temperature are interesting because quantum fluctuations have been shown to dramatically alter electron gas properties. Here, the metal formed by Co doping the paramagnetic insulator FeS2, Fe1-xCoxS2 is demonstrated to order ferromagnetically at x > xc = 0.01+/-0.005, where we observe unusual transport, magnetic, and thermodynamic properties. We show that this magnetic semiconductor undergoes a percolative magnetic transition with distinct similarities to the Griffiths phase, including singular behavior at xc and zero temperature.

10.
Science ; 317(5841): 1049-52, 2007 Aug 24.
Article in English | MEDLINE | ID: mdl-17656685

ABSTRACT

Mesoscopic quantum phase coherence is important because it improves the prospects for handling quantum degrees of freedom in technology. Here we show that the development of such coherence can be monitored using magnetic neutron scattering from a one-dimensional spin chain of an oxide of nickel (Y2BaNiO5), a quantum spin fluid in which no classical static magnetic order is present. In the cleanest samples, the quantum coherence length is 20 nanometers, which is almost an order of magnitude larger than the classical antiferromagnetic correlation length of 3 nanometers. We also demonstrate that the coherence length can be modified by static and thermally activated defects in a quantitatively predictable manner.

11.
Phys Rev Lett ; 98(5): 057001, 2007 Feb 02.
Article in English | MEDLINE | ID: mdl-17358884

ABSTRACT

We present highly sensitive Hall effect measurements of the heavy fermion compound CeCoIn5 down to temperatures of 55 mK. A pronounced dip in the differential Hall coefficient | partial differential rho(xy)/ partial differential H| at low temperature and above the upper critical field of superconductivity, H(c2), is attributed to critical spin fluctuations associated with the departure from Landau Fermi liquid behavior. This identification is strongly supported by a systematic suppression of this feature at elevated pressures. The resulting crossover line in the field-temperature phase diagram favors a field induced quantum critical point at mu(0)H(qc) approximately 4.1 T below H(c2)(T=0) suggesting related, yet separate, critical fields.

12.
Phys Rev Lett ; 90(8): 087202, 2003 Feb 28.
Article in English | MEDLINE | ID: mdl-12633455

ABSTRACT

Inelastic neutron scattering was used to probe edge states in a quantum spin liquid. The experiment was performed on finite length antiferromagnetic spin-1 chains in Y2BaNi1-xMgxO5. At finite fields, there is a Zeeman resonance below the Haldane gap. The wave-vector dependence of its intensity provides direct evidence for staggered magnetization at chain ends, which decays exponentially towards the bulk [xi=8(1) at T=0.1 K]. Continuum contributions to the chain-end spectrum indicate interchain segment interactions. We also observe a finite size blueshift of the Haldane gap.

SELECTION OF CITATIONS
SEARCH DETAIL
...