Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 310: 136765, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36241119

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of anthropogenic chemicals used to provide water and stain resistance in many consumer products. Their widespread use, nearly ubiquitous presence across multiple environments, and growing list of adverse health effects has raised concerns among communities. PFAS have been frequently detected and quantified globally in wastewater, groundwater, surface and drinking water; however, the presence of PFAS in swimming pool water - a unique matrix in which constituents may concentrate through evaporation and which also may present a high risk of direct human exposure - has not been reported. Here, ultra-high performance liquid chromatography - tandem mass spectrometry (UHPLC-MS/MS) was used to monitor 92 PFAS in 54 water samples collected from city, apartment, hotel, and personal swimming pools in six Florida cities. In total, 14 PFAS were detected with six perfluoroalkyl acids - perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA) and perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorobutane sulfonate (PFBS) - detected in every sample. PFHxA accounted for 49% of all PFAS quantified in this study. PFAS profiles were compared between sites as a function of pool type, rate of use, and geographic location. Total ΣPFAS concentrations were similar across pool types, with both the highest (633 ng/L) and lowest (1.9 ng/L) measurements found in public city pools. Between sites, higher PFAS levels were observed in city pools in Miami, Melbourne and Tampa compared to Naples, Orlando and Gainesville. Our findings highlight the potential exposure of PFAS in an underexplored and yet important exposure pathway in communities.


Subject(s)
Alkanesulfonic Acids , Drinking Water , Fluorocarbons , Water Pollutants, Chemical , Humans , Fluorocarbons/analysis , Tandem Mass Spectrometry , Swimming , Water Pollutants, Chemical/analysis , Drinking Water/chemistry , Alkanesulfonic Acids/analysis
2.
Chemosphere ; 301: 134478, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35367496

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) constitute a class of highly stable and extensively manufactured anthropogenic chemicals that have been linked to a variety of adverse health effects in humans and wildlife. These compounds are ubiquitously distributed in the environment and have been measured in aquatic systems globally. However, there are limited data on longitudinal comprehensive assessments of PFAS profiles within sensitive aquatic ecosystems. Surface water samples were collected from the Indian River Lagoon (IRL) and the Atlantic coast within Brevard County (BC), FL in December of 2019 (n = 57) and again from corresponding locations in February of 2021 (n = 40). Samples were analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to determine the occurrence, concentration, and distribution of 92 PFAS. No significant difference in total PFAS concentrations were identified between samples collected in 2019 (87 ng/L) and those collected in 2021 (77 ng/L). However, comparisons of PFAS among four natural sub-regions within Brevard County revealed site- and regional-specific differences. The Banana River exhibited the greatest concentration of total PFAS, followed by the southern Indian River, the northern Indian River, and then the Atlantic coast. Six distinct PFAS profiles were identified with the novel application of multivariate statistical cluster analysis, which may be useful for identifying potential sources of PFAS. Elevated total PFAS and unique compound mixtures identified in the Banana River are most likely a result of industrial discharge and extensive historical use of aqueous film-forming foams (AFFF). The environmental persistence of PFAS threatens key ecosystem services and the ecological homeostasis of the Indian River Lagoon - the most biologically diverse estuary in North America. Brevard County offers a unique model site that may be used to investigate potential exposure and health implications for wildlife and adjacent coastal communities, which could be extrapolated to better understand and manage other critical coastal systems.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Ecosystem , Fluorocarbons/analysis , Humans , Rivers , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...