Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 5(1): 269, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35338240

ABSTRACT

The nidopallium caudolaterale (NCL), an integration centre in the telencephalon of birds, plays a crucial role in representing and maintaining abstract categories and concepts. However, the computational principles allowing pallial microcircuits consisting of excitatory and inhibitory neurons to shape the tuning to abstract categories remain elusive. Here we identified the major pallial cell types, putative excitatory projection cells and inhibitory interneurons, by characterizing the waveforms of action potentials recorded in crows performing a cognitively demanding numerical categorization task. Both cell types showed clear differences in their capacity to encode categorical information. Nearby and functionally coupled putative projection neurons generally exhibited similar tuning, whereas putative interneurons showed mainly opposite tuning. The results favour feedforward mechanisms for the shaping of categorical tuning in microcircuits of the NCL. Our findings help to decipher the workings of pallial microcircuits in birds during complex cognition and to compare them vis-a-vis neocortical processes in mammals.


Subject(s)
Crows , Action Potentials/physiology , Animals , Cognition/physiology , Mammals , Neurons/physiology , Telencephalon
2.
J Neurosci ; 41(22): 4889-4896, 2021 06 02.
Article in English | MEDLINE | ID: mdl-33875573

ABSTRACT

Different species of animals can discriminate numerosity, the countable number of objects in a set. The representations of countable numerosities have been deciphered down to the level of single neurons. However, despite its importance for human number theory, a special numerical quantity, the empty set (numerosity zero), has remained largely unexplored. We explored the behavioral and neuronal representation of the empty set in carrion crows. Crows were trained to discriminate small numerosities including the empty set. Performance data showed a numerical distance effect for the empty set in one crow, suggesting that the empty set and countable numerosities are represented along the crows' "mental number line." Single-cell recordings in the endbrain region nidopallium caudolaterale (NCL) showed a considerable proportion of NCL neurons tuned to the preferred numerosity zero. As evidenced by neuronal distance and size effects, NCL neurons integrated the empty set in the neural number line. A subsequent neuronal population analysis using a statistical classifier approach showed that the neuronal numerical representations were predictive of the crows' success in the task. These behavioral and neuronal data suggests that the conception of the empty set as a cognitive precursor of a zero-like number concept is not an exclusive property of the cerebral cortex of primates. Zero as a quantitative category cannot only be implemented in the layered neocortex of primates, but also in the anatomically distinct endbrain circuitries of birds that evolved based on convergent evolution.SIGNIFICANCE STATEMENT The conception of "nothing" as number "zero" is celebrated as one of the greatest achievements in mathematics. To explore whether precursors of zero-like concepts can be found in vertebrates with a cerebrum that anatomically differs starkly from our primate brain, we investigated this in carrion crows. We show that crows can grasp the empty set as a null numerical quantity that is mentally represented next to number one. Moreover, we show that single neurons in an associative avian cerebral region specifically respond to the empty set and show the same physiological characteristics as for countable quantities. This suggests that zero as a quantitative category can also be implemented in the anatomically distinct endbrain circuitries of birds that evolved based on convergent evolution.


Subject(s)
Cognition/physiology , Mathematical Concepts , Telencephalon/physiology , Animals , Crows , Male , Neurons/physiology
3.
Nat Commun ; 11(1): 686, 2020 02 04.
Article in English | MEDLINE | ID: mdl-32019934

ABSTRACT

Humans' symbolic counting skills are built on a primordial ability to approximately estimate the number of items, or numerosity. To date it is debated whether numerosities presented in categorically different formats, that is as temporal sequences versus spatial arrays, are represented abstractly in the brain. To address this issue, we identified the behavioral characteristics and neuronal codes for sequential and simultaneous number formats in crows. We find a format-dependent representation by distinct groups of selective neurons during the sensory encoding stage. However, an abstract and format-independent numerosity code emerges once the encoding phase is completed and numerosities needed to be memorized. These results suggest a successive two-stage code for categorically different number formats and help to reconcile conflicting findings observed in psychophysics and brain imaging.


Subject(s)
Crows/physiology , Telencephalon/physiology , Animals , Male , Mathematical Concepts , Neurons/physiology , Visual Perception
4.
Front Syst Neurosci ; 12: 33, 2018.
Article in English | MEDLINE | ID: mdl-30072877

ABSTRACT

Lesion studies suggest a role of the avian hippocampus in spatial and episodic memory. However, whether the avian hippocampus is also involved in processing categorical information and non-spatial working memory contents remains unknown. To address this question, we trained two crows in a delayed-match-to-sample test to assess and briefly memorize the number of items in dot displays, i.e., their numerosity. We recorded neuronal activity in hippocampus while crows solved this task. Hardly any hippocampal neurons responded to the category 'numerosity,' during neither sample presentation, nor during the memory delay. This was in striking contrast to previous recordings in the telencephalic association area 'nidopallium caudolaterale' (NCL) of the same crows, in which we previously reported an abundance of numerosity-selective and working memory-selective neurons. Our data suggest that categorical information is not processed in the avian hippocampus.

5.
Curr Biol ; 28(7): 1090-1094.e4, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29551415

ABSTRACT

Endowed with an elaborate cerebral cortex, humans and other primates can assess the number of items in a set, or numerosity, from birth on [1] and without being trained [2]. Whether spontaneous numerosity extraction is a unique feat of the mammalian cerebral cortex [3-7] or rather an adaptive property that can be found in differently designed and independently evolved neural substrates, such as the avian enbrain [8], is unknown. To address this question, we recorded single-cell activity from the nidopallium caudolaterale (NCL), a high-level avian association brain area [9-11], of numerically naive crows. We found that a proportion of NCL neurons were spontaneously responsive to numerosity and tuned to the number of items, even though the crows were never trained to assess numerical quantity. Our data show that numerosity-selective neuronal responses are spontaneously present in the distinct endbrains of diverge vertebrate taxa. This seemingly hard-wired property of the avian endbrain to extract numerical quantity explains how birds in the wild, or right after hatching, can exploit numerical cues when making foraging or social decisions. It suggests that endbrain circuitries that evolved based on convergent evolution, such as the avian endbrain, give rise to the same numerosity code.


Subject(s)
Behavior, Animal/physiology , Cognition/physiology , Discrimination, Psychological/physiology , Mathematical Concepts , Neurons/physiology , Telencephalon/physiology , Visual Perception/physiology , Animals , Crows
6.
J Neurosci ; 36(47): 12044-12052, 2016 11 23.
Article in English | MEDLINE | ID: mdl-27881787

ABSTRACT

Neurons in the avian nidopallium caudolaterale (NCL), an endbrain structure that originated independently from the mammalian neocortex, process visual numerosities. To clarify the code for number in this anatomically distinct endbrain area in birds, neuronal responses to a broad range of numerosities were analyzed. We recorded single-neuron activity from the NCL of crows performing a delayed match-to-sample task with visual numerosities as discriminanda. The responses of >20% of randomly selected neurons were modulated significantly by numerosities ranging from one to 30 items. Numerosity-selective neurons showed bell-shaped tuning curves with one of the presented numerosities as preferred numerosity regardless of the physical appearance of the items. The resulting labeled-line code exhibited logarithmic compression obeying the Weber-Fechner law for magnitudes. Comparable proportions of selective neurons were found, not only during stimulus presentation, but also in the delay phase, indicating a dominant role of the NCL in numerical working memory. Both during sensory encoding and memorization of numerosities in working memory, NCL activity predicted the crows' number discrimination performance. These neuronal data reveal striking similarities across vertebrate taxa in their code for number despite convergently evolved and anatomically distinct endbrain structures. SIGNIFICANCE STATEMENT: Birds are known for their capabilities to process numerical quantity. However, birds lack a six-layered neocortex that enables primates with numerical competence. We aimed to decipher the neuronal code for numerical quantity in the independently and distinctly evolved endbrain of birds. We recorded the activity of neurons in an endbrain association area termed nidopallium caudolaterale (NCL) from crows that assessed and briefly memorized numerosities from one to 30 dots. We report a neuronal code for sensory representation and working memory of numerosities in the crow NCL exhibiting several characteristics that are surprisingly similar to the ones found in primates. Our data suggest a common code for number in two different vertebrate taxa that has evolved based on convergent evolution.


Subject(s)
Cognition/physiology , Crows/physiology , Memory, Short-Term/physiology , Nerve Net/physiology , Telencephalon/physiology , Visual Perception/physiology , Animals , Female , Male , Mathematical Concepts
7.
Proc Biol Sci ; 283(1827): 20160083, 2016 03 30.
Article in English | MEDLINE | ID: mdl-27009227

ABSTRACT

The ability to estimate number is widespread throughout the animal kingdom. Based on the relative close phylogenetic relationship (and thus equivalent brain structures), non-verbal numerical representations in human and non-human primates show almost identical behavioural signatures that obey the Weber-Fechner law. However, whether numerosity discriminations of vertebrates with a very different endbrain organization show the same behavioural signatures remains unknown. Therefore, we tested the numerical discrimination performance of two carrion crows (Corvus corone) to a broad range of numerosities from 1 to 30 in a delayed match-to-sample task similar to the one used previously with primates. The crows' discrimination was based on an analogue number system and showed the Weber-fraction signature (i.e. the 'just noticeable difference' between numerosity pairs increased in proportion to the numerical magnitudes). The detailed analysis of the performance indicates that numerosity representations in crows are scaled on a logarithmically compressed 'number line'. Because the same psychophysical characteristics are found in primates, these findings suggest fundamentally similar number representations between primates and birds. This study helps to resolve a classical debate in psychophysics: the mental number line seems to be logarithmic rather than linear, and not just in primates, but across vertebrates.


Subject(s)
Cognition , Crows/physiology , Telencephalon/physiology , Animals , Differential Threshold , Female , Male , Psychophysics
8.
Proc Natl Acad Sci U S A ; 112(25): 7827-32, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26056278

ABSTRACT

It is unknown whether anatomical specializations in the endbrains of different vertebrates determine the neuronal code to represent numerical quantity. Therefore, we recorded single-neuron activity from the endbrain of crows trained to judge the number of items in displays. Many neurons were tuned for numerosities irrespective of the physical appearance of the items, and their activity correlated with performance outcome. Comparison of both behavioral and neuronal representations of numerosity revealed that the data are best described by a logarithmically compressed scaling of numerical information, as postulated by the Weber-Fechner law. The behavioral and neuronal numerosity representations in the crow reflect surprisingly well those found in the primate association cortex. This finding suggests that distantly related vertebrates with independently developed endbrains adopted similar neuronal solutions to process quantity.


Subject(s)
Brain/physiology , Crows/physiology , Neurons/physiology , Animals , Brain/cytology , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...