Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
IEEE Open J Control Syst ; 1: 15-28, 2022.
Article in English | MEDLINE | ID: mdl-35673605

ABSTRACT

Task-specific, trajectory-based control methods commonly used in exoskeletons may be appropriate for individuals with paraplegia, but they overly constrain the volitional motion of individuals with remnant voluntary ability (representing a far larger population). Human-exoskeleton systems can be represented in the form of the Euler-Lagrange equations or, equivalently, the port-controlled Hamiltonian equations to design control laws that provide task-invariant assistance across a continuum of activities/environments by altering energetic properties of the human body. We previously introduced a port-controlled Hamiltonian framework that parameterizes the control law through basis functions related to gravitational and gyroscopic terms, which are optimized to fit normalized able-bodied joint torques across multiple walking gaits on different ground inclines. However, this approach did not have the flexibility to reproduce joint torques for a broader set of activities, including stair climbing and stand-to-sit, due to strict assumptions related to input-output passivity, which ensures the human remains in control of energy growth in the closed-loop dynamics. To provide biomimetic assistance across all primary activities of daily life, this paper generalizes this energy shaping framework by incorporating vertical ground reaction forces and global planar orientation into the basis set, while preserving passivity between the human joint torques and human joint velocities. We present an experimental implementation on a powered knee-ankle exoskeleton used by three able-bodied human subjects during walking on various inclines, ramp ascent/descent, and stand-to-sit, demonstrating the versatility of this control approach and its effect on muscular effort.

2.
Int J Sports Med ; 38(10): 770-775, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28768339

ABSTRACT

The aim of the study was to determine whether habitual minimalist shoe runners present with purported favorable running biomechanithat reduce running injury risk such as initial loading rate. Eighteen minimalist and 16 traditionally cushioned shod runners were assessed when running both in their preferred training shoe and barefoot. Ankle and knee joint kinetics and kinematics, initial rate of loading, and footstrike angle were measured. Sagittal ankle and knee joint stiffness were also calculated. Results of a two-factor ANOVA presented no group difference in initial rate of loading when participants were running either shod or barefoot; however, initial loading rate increased for both groups when running barefoot (p=0.008). Differences in footstrike angle were observed between groups when running shod, but not when barefoot (minimalist:8.71±8.99 vs. traditional: 17.32±11.48 degrees, p=0.002). Lower ankle joint stiffness was found in both groups when running barefoot (p=0.025). These findings illustrate that risk factors for injury potentially differ between the two groups. Shoe construction differences do change mechanical demands, however, once habituated to the demands of a given shoe condition, certain acute favorable or unfavorable responses may be moderated. The purported benefits of minimalist running shoes in mimicking habitual barefoot running is questioned, and risk of injury may not be attenuated.


Subject(s)
Ankle Joint/physiology , Gait , Knee Joint/physiology , Running/physiology , Shoes , Adult , Athletic Performance/physiology , Biomechanical Phenomena , Female , Foot/physiology , Humans , Male , Range of Motion, Articular
3.
Gait Posture ; 58: 274-279, 2017 10.
Article in English | MEDLINE | ID: mdl-28837918

ABSTRACT

The aim of this study was to utilise one-dimensional statistical parametric mapping to compare differences between biomechanical and electromyographical waveforms in runners when running in barefoot or shod conditions. Fifty habitually shod runners were assessed during overground running at their current 10-km race running speed. Electromyography, kinematics and ground reaction forces were collected during these running trials. Joint kinetics were calculated using inverse dynamics. One-dimensional statistical parametric mapping one sample t-test was conducted to assess differences over an entire gait cycle on the variables of interest when barefoot or shod (p<0.05). Only sagittal plane differences were found between barefoot and shod conditions at the knee during late stance (18-23% of the gait cycle) and swing phase (74-90%); at the ankle early stance (0-6%), mid-stance (28-38%) and swing phase (81-100%). Differences in sagittal plane moments were also found at the ankle during early stance (2, 4-5%) and knee during early stance (5-11%). Condition differences were also found in vertical ground reaction force during early stance between (3-10%). An acute bout of barefoot running in habitual shod runners invokes temporal differences throughout the gait cycle. Specifically, a co-ordinative responses between the knee and ankle joint in the sagittal plane with a delay in the impact transient peak; onset of the knee extension and ankle plantarflexion moment in the shod compared to barefoot condition was found. This appears to affect the delay in knee extension and ankle plantarflexion during late stance. This study provides a glimpse into the co-ordination of the lower limb when running in differing footwear.


Subject(s)
Foot/physiology , Gait/physiology , Running/physiology , Shoes , Adult , Ankle Joint/physiology , Biomechanical Phenomena , Electromyography , Female , Humans , Knee Joint/physiology , Male , Young Adult
4.
Clin Neurophysiol ; 124(1): 136-47, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22959414

ABSTRACT

OBJECTIVE: To investigate the effects of neurophysiological, behavioural and perceptual differences between wrist flexion and extension movements, on their corticomuscular coherence (CMC) levels. METHODS: CMC was calculated between simultaneously recorded electroencephalography (EEG) and electromyography (EMG) measures from fifteen healthy subjects who performed 10 repetitions of alternating isometric wrist flexion and extension tasks at 15% of their maximum voluntary contraction (MVC) torque levels. Task precision was calculated from torque recordings. Subjects rated the perceived difficulty levels for both tasks. RESULTS: Flexors had significantly lower; peak beta CMC, peak frequency, frequency width, normalised EMG beta power, torque fluctuation (<5 Hz and beta band) and perceived difficulty ratings; but higher MVC and precision compared to extensors. EEG alpha and beta powers were non-different between flexion and extension. CONCLUSIONS: An inverse relationship between CMC and motor precision was found in our inter-muscle study, contrary to the direct relationship found in a prior intra-muscle study. Functional suitability, long term usage adaptation and lower perceived difficulty of wrist flexion may explain the results. SIGNIFICANCE: We extend the CMC literature to include the clinically different, antagonistic wrist flexors and extensors and add to the debate relating CMC and motor precision by positing the confounding effect of perceived difficulty.


Subject(s)
Behavior/physiology , Motor Cortex/physiology , Muscle, Skeletal/physiology , Perception/physiology , Wrist/physiology , Adult , Alpha Rhythm/physiology , Beta Rhythm/physiology , Data Interpretation, Statistical , Electroencephalography , Electromyography , Electrooculography , Electrophysiological Phenomena , Forearm/physiology , Humans , Isometric Contraction/physiology , Male , Movement/physiology , Psychomotor Performance/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...