Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Appl Nano Mater ; 6(9): 7173-7185, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37205295

ABSTRACT

Ni-Fe nanocatalysts supported on CeO2 have been prepared for the catalysis of methane steam reforming (MSR) aiming for coke-resistant noble metal-free catalysts. The catalysts have been synthesized by traditional incipient wetness impregnation as well as dry ball milling, a green and more sustainable preparation method. The impact of the synthesis method on the catalytic performance and the catalysts' nanostructure has been investigated. The influence of Fe addition has been addressed as well. The reducibility and the electronic and crystalline structure of Ni and Ni-Fe mono- and bimetallic catalysts have been characterized by temperature programmed reduction (H2-TPR), in situ synchrotron X-ray diffraction (SXRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Their catalytic activity was tested between 700 and 950 °C at 108 L gcat-1 h-1 and with the reactant flow varying between 54 and 415 L gcat-1 h-1 at 700 °C. Hydrogen production rates of 67 mol gmet-1 h-1 have been achieved. The performance of the ball-milled Fe0.1Ni0.9/CeO2 catalyst was similar to that of Ni/CeO2 at high temperatures, but Raman spectroscopy revealed a higher amount of highly defective carbon on the surface of Ni-Fe nanocatalysts. The reorganization of the surface under MSR of the ball-milled NiFe/CeO2 has been monitored by in situ near-ambient pressure XPS experiments, where a strong reorganization of the Ni-Fe nanoparticles with segregation of Fe toward the surface has been observed. Despite the catalytic activity being lower in the low-temperature regime, Fe addition for the milled nanocatalyst increased the coke resistance and could be an efficient alternative to industrial Ni/Al2O3 catalysts.

2.
J Am Chem Soc ; 145(5): 3016-3030, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36716273

ABSTRACT

The hydrogenation of CO2 to methanol over Cu/ZnO-based catalysts is highly sensitive to the surface composition and catalyst structure. Thus, its optimization requires a deep understanding of the influence of the pre-catalyst structure on its evolution under realistic reaction conditions, including the formation and stabilization of the most active sites. Here, the role of the pre-catalyst shape (cubic vs spherical) in the activity and selectivity of ZnO-supported Cu nanoparticles was investigated during methanol synthesis. A combination of ex situ, in situ, and operando microscopy, spectroscopy, and diffraction methods revealed drastic changes in the morphology and composition of the shaped pre-catalysts under reaction conditions. In particular, the rounding of the cubes and partial loss of the (100) facets were observed, although such motifs remained in smaller domains. Nonetheless, the initial pre-catalyst structure was found to strongly affect its subsequent transformation in the course of the CO2 hydrogenation reaction and activity/selectivity trends. In particular, the cubic Cu particles displayed an increased activity for methanol production, although at the cost of a slightly reduced selectivity when compared to similarly sized spherical particles. These findings were rationalized with the help of density functional theory calculations.

3.
Nat Commun ; 13(1): 5080, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36038555

ABSTRACT

Efficiently treating methane emissions in transportation remains a challenge. Here, we investigate palladium and platinum mono- and bimetallic ceria-supported catalysts synthesized by mechanical milling and by traditional impregnation for methane total oxidation under dry and wet conditions, reproducing those present in the exhaust of natural gas vehicles. By applying a toolkit of in situ synchrotron techniques (X-ray diffraction, X-ray absorption and ambient pressure photoelectron spectroscopies), together with transmission electron microscopy, we show that the synthesis method greatly influences the interaction and structure at the nanoscale. Our results reveal that the components of milled catalysts have a higher ability to transform metallic Pd into Pd oxide species strongly interacting with the support, and achieve a modulated PdO/Pd ratio than traditionally-synthesized catalysts. We demonstrate that the unique structures attained by milling are key for the catalytic activity and correlate with higher methane conversion and longer stability in the wet feed.

4.
ACS Appl Mater Interfaces ; 13(27): 31614-31623, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34077185

ABSTRACT

Bimetallic Pt-Pd catalysts supported on ceria have been prepared by mechanochemical synthesis and tested for lean methane oxidation in dry and wet atmosphere. Results show that the addition of platinum has a negative effect on transient light-off activity, but for Pd/Pt molar ratios between 1:1 and 8:1 an improvement during time-on-stream experiments in wet conditions is observed. The bimetallic samples undergo a complex restructuring during operation, starting from the alloying of Pt and Pd and resulting in the formation of unprecedented "mushroom-like" structures consisting of PdO bases with Pt heads as revealed by high-resolution transmission electron microscopy (HRTEM) analysis. On milled samples, these structures are well-defined and observed at the interface between palladium and ceria, whereas those on the impregnated catalyst appear less ordered and are located randomly on the surface of ceria and of large PdPt clusters. The milled catalyst prepared by first milling Pd metal and ceria followed by the addition of Pt shows better performances compared to a conventional impregnated sample and also to a sample obtained by inverting the Pd-Pt milling order. This has been ascribed to the intimate contact between Pd and CeO2 generated at the nanoscale during the milling process.

5.
Nat Commun ; 12(1): 1435, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33664267

ABSTRACT

Although Cu/ZnO-based catalysts have been long used for the hydrogenation of CO2 to methanol, open questions still remain regarding the role and the dynamic nature of the active sites formed at the metal-oxide interface. Here, we apply high-pressure operando spectroscopy methods to well-defined Cu and Cu0.7Zn0.3 nanoparticles supported on ZnO/Al2O3, γ-Al2O3 and SiO2 to correlate their structure, composition and catalytic performance. We obtain similar activity and methanol selectivity for Cu/ZnO/Al2O3 and CuZn/SiO2, but the methanol yield decreases with time on stream for the latter sample. Operando X-ray absorption spectroscopy data reveal the formation of reduced Zn species coexisting with ZnO on CuZn/SiO2. Near-ambient pressure X-ray photoelectron spectroscopy shows Zn surface segregation and the formation of a ZnO-rich shell on CuZn/SiO2. In this work we demonstrate the beneficial effect of Zn, even in diluted form, and highlight the influence of the oxide support and the Cu-Zn interface in the reactivity.

6.
Angew Chem Int Ed Engl ; 58(47): 17047-17053, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31476272

ABSTRACT

Production of multicarbon products (C2+ ) from CO2 electroreduction reaction (CO2 RR) is highly desirable for storing renewable energy and reducing carbon emission. The electrochemical synthesis of CO2 RR catalysts that are highly selective for C2+ products via electrolyte-driven nanostructuring is presented. Nanostructured Cu catalysts synthesized in the presence of specific anions selectively convert CO2 into ethylene and multicarbon alcohols in aqueous 0.1 m KHCO3 solution, with the iodine-modified catalyst displaying the highest Faradaic efficiency of 80 % and a partial geometric current density of ca. 31.2 mA cm-2 for C2+ products at -0.9 V vs. RHE. Operando X-ray absorption spectroscopy and quasi in situ X-ray photoelectron spectroscopy measurements revealed that the high C2+ selectivity of these nanostructured Cu catalysts can be attributed to the highly roughened surface morphology induced by the synthesis, presence of subsurface oxygen and Cu+ species, and the adsorbed halides.

7.
J Phys Chem C Nanomater Interfaces ; 123(13): 8421-8428, 2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30976377

ABSTRACT

Surface segregation and restructuring in size-selected CuNi nanoparticles were investigated via near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) at various temperatures in different gas environments. Particularly in focus were structural and morphological changes occurring under CO2 hydrogenation conditions in the presence of carbon monoxide (CO) in the reactant gas mixture. Nickel surface segregation was observed when only CO was present as adsorbate. The segregation trend is inverted in a reaction gas mixture consisting of CO2, H2, and CO, resulting in an increase of copper concentration on the surface. Density functional theory calculations attributed the inversion of the segregation trend to the formation of a stable intermediate on the nanocatalyst surface (CH3O) in the CO-containing reactant mixture, which modifies the nickel segregation energy, thus driving copper to the surface. The promoting role of CO for the synthesis of methanol was demonstrated by catalytic characterization measurements of silica-supported CuNi NPs in a fixed-bed reactor, revealing high methanol selectivity (over 85%) at moderate pressures (20 bar). The results underline the important role of intermediate reaction species in determining the surface composition of bimetallic nanocatalysts and help understand the effect of CO cofeed on the properties of CO2 hydrogenation catalysts.

8.
J Am Chem Soc ; 140(30): 9383-9386, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30008209

ABSTRACT

We explored the size-dependent activity and selectivity of Zn nanoparticles (NPs) for the electrochemical CO2 reduction reaction (CO2RR). Zn NPs ranging from 3 to 5 nm showed high activity and selectivity (∼70%) for CO production, whereas those above 5 nm exhibited bulk-like catalytic properties. In addition, a drastic increase in hydrogen production was observed for the Zn NPs below 3 nm, which is associated with the enhanced content of low-coordinated sites on small NPs. The presence of residual cationic Zn species in the catalysts was also revealed during CO2RR via operando X-ray absorption fine-structure spectroscopy measurements. Such species are expected to play a role in the selectivity trends obtained. Our findings can serve as guidance for the development of highly active and CO-selective Zn-based catalysts for CO2RR.

9.
J Phys Chem B ; 122(2): 919-926, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29068680

ABSTRACT

Surface segregation, restructuring, and sintering phenomena in size-selected copper-nickel nanoparticles (NPs) supported on silicon dioxide substrates were systematically investigated as a function of temperature, chemical state, and reactive gas environment. Using near-ambient pressure (NAP-XPS) and ultrahigh vacuum X-ray photoelectron spectroscopy (XPS), we showed that nickel tends to segregate to the surface of the NPs at elevated temperatures in oxygen- or hydrogen-containing atmospheres. It was found that the NP pretreatment, gaseous environment, and oxide formation free energy are the main driving forces of the restructuring and segregation trends observed, overshadowing the role of the surface free energy. The depth profile of the elemental composition of the particles was determined under operando CO2 hydrogenation conditions by varying the energy of the X-ray beam. The temperature dependence of the chemical state of the two metals was systematically studied, revealing the high stability of nickel oxides on the NPs and the important role of high valence oxidation states in the segregation behavior. Atomic force microscopy (AFM) studies revealed a remarkable stability of the NPs against sintering at temperatures as high as 700 °C. The results provide new insights into the complex interplay of the various factors which affect alloy formation and segregation phenomena in bimetallic NP systems, often in ways different from those previously known for their bulk counterparts. This leads to new routes for tuning the surface composition of nanocatalysts, for example, through plasma and annealing pretreatments.

10.
Angew Chem Int Ed Engl ; 56(38): 11394-11398, 2017 09 11.
Article in English | MEDLINE | ID: mdl-28710839

ABSTRACT

Efficient, stable catalysts with high selectivity for a single product are essential if electroreduction of CO2 is to become a viable route to the synthesis of industrial feedstocks and fuels. A plasma oxidation pre-treatment of silver foil enhances the number of low-coordinated catalytically active sites, which dramatically lowers the overpotential and increases the activity of CO2 electroreduction to CO. At -0.6 V versus RHE more than 90 % Faradaic efficiency towards CO was achieved on a pre-oxidized silver foil. While transmission electron microscopy (TEM) and operando X-ray absorption spectroscopy showed that oxygen species can survive in the bulk of the catalyst during the reaction, quasi in situ X-ray photoelectron spectroscopy showed that the surface is metallic under reaction conditions. DFT calculations reveal that the defect-rich surface of the plasma-oxidized silver foils in the presence of local electric fields drastically decrease the overpotential of CO2 electroreduction.

11.
ACS Nano ; 11(5): 4825-4831, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28441005

ABSTRACT

Carbon dioxide electroreduction to chemicals and fuels powered by renewable energy sources is considered a promising path to address climate change and energy storage needs. We have developed highly active and selective copper (Cu) nanocube catalysts with tunable Cu(100) facet and oxygen/chlorine ion content by low-pressure plasma pretreatments. These catalysts display lower overpotentials and higher ethylene, ethanol, and n-propanol selectivity, resulting in a maximum Faradaic efficiency (FE) of ∼73% for C2 and C3 products. Scanning electron microscopy and energy-dispersive X-ray spectroscopy in combination with quasi-in situ X-ray photoelectron spectroscopy revealed that the catalyst shape, ion content, and ion stability under electrochemical reaction conditions can be systematically tuned through plasma treatments. Our results demonstrate that the presence of oxygen species in surface and subsurface regions of the nanocube catalysts is key for achieving high activity and hydrocarbon/alcohol selectivity, even more important than the presence of Cu(100) facets.

12.
Science ; 346(6209): 620-3, 2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25359970

ABSTRACT

Catalysts used for heterogeneous processes are usually composed of metal nanoparticles dispersed over a high-surface-area support. In recent years, near-ambient pressure techniques have allowed catalyst characterization under operating conditions, overcoming the pressure gap effect. However, the use of model systems may not truly represent the changes that occur in real catalysts (the so-called material gap effect). Supports can play an important role in the catalytic process by providing new active sites and may strongly affect both the physical and chemical properties of metal nanoparticles. We used near-ambient pressure x-ray photoelectron spectroscopy to show that the surface rearrangement of bimetallic (rhodium-palladium) nanoparticles under working conditions for ethanol steam reforming with real catalysts is strongly influenced by the presence of a reducible ceria support.

13.
Chemistry ; 19(36): 11963-74, 2013 Sep 02.
Article in English | MEDLINE | ID: mdl-23868578

ABSTRACT

A facile strategy has been explored for loading noble metals onto the surface of ferrite nanoparticles with the assistance of phosphine-functionalized linkers. Palladium loading is shown to occur with participation of both the phosphine function and the surface hydroxyl groups. Hybrid nanoparticles containing simultaneously Pd and Au (or Rh) are obtained by successive loading of metals. Similarly, ferrite nanoparticles decorated with Pd, Au, and Rh have also been formed by using the same strategy. The catalytic properties of the new nanoparticles are evidenced in processes such as reduction of 4-nitrophenol or hydrogenation of styrene. Besides, the sequential process involving a cross-coupling reaction followed by reduction of 1-nitrobiphenyl has been successfully achieved by employing Pd/Au decorated nanoferrite particles.


Subject(s)
Ferric Compounds/chemistry , Metal Nanoparticles/chemistry , Nitrophenols/chemistry , Styrene/chemistry , Catalysis , Hydrogenation , Molecular Structure
14.
Nanoscale ; 4(7): 2278-80, 2012 Apr 07.
Article in English | MEDLINE | ID: mdl-22383022

ABSTRACT

We report a method to improve the thermal stability, up to 900 °C, of bare-metal (naked) gold nanoparticles supported on top of SiO(2) and SrTiO(3) substrates via ligand-assisted pinning. This approach leads to monodisperse naked gold nanoparticles without significant sintering after thermal annealing in air at 900 °C. The ligand-assisted pinning mechanism is described.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Silicon Dioxide/chemistry , Drug Stability , Electroplating/methods , Ligands , Models, Biological , Oxides/chemistry , Silanes/chemical synthesis , Silanes/chemistry , Silicon Compounds/chemical synthesis , Silicon Compounds/chemistry , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...