Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-29335369

ABSTRACT

Telomeres are highly conserved regions of DNA that protect the ends of linear chromosomes. The loss of telomeres can signal an irreversible change to a cell's state, including cellular senescence. Senescent cells no longer divide and can damage nearby healthy cells, thus potentially placing them at the crossroads of cancer and ageing. While the epidemiology, cellular and molecular biology of telomeres are well studied, a newer field exploring telomere biology in the context of ecology and evolution is just emerging. With work to date focusing on how telomere shortening relates to individual mortality, less is known about how telomeres relate to ageing rates across species. Here, we investigated telomere length in cross-sectional samples from 19 bird species to determine how rates of telomere loss relate to interspecific variation in maximum lifespan. We found that bird species with longer lifespans lose fewer telomeric repeats each year compared with species with shorter lifespans. In addition, phylogenetic analysis revealed that the rate of telomere loss is evolutionarily conserved within bird families. This suggests that the physiological causes of telomere shortening, or the ability to maintain telomeres, are features that may be responsible for, or co-evolved with, different lifespans observed across species.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.


Subject(s)
Aging/physiology , Birds/physiology , Longevity/physiology , Telomere Shortening/physiology , Telomere/physiology , Aging/genetics , Animals , Biological Variation, Population , Birds/genetics , Cellular Senescence , Cross-Sectional Studies , Female , Longevity/genetics , Male , Phylogeny , Telomere/genetics , Telomere Shortening/genetics
2.
Biol Lett ; 12(9)2016 09.
Article in English | MEDLINE | ID: mdl-27601723

ABSTRACT

Mandt's black guillemot (Cepphus grylle mandtii) is one of the few seabirds associated in all seasons with Arctic sea ice, a habitat that is changing rapidly. Recent decreases in summer ice have reduced breeding success and colony size of this species in Arctic Alaska. Little is known about the species' movements and distribution during the nine month non-breeding period (September-May), when changes in sea ice extent and composition are also occurring and predicted to continue. To examine bird movements and the seasonal role of sea ice to non-breeding Mandt's black guillemots, we deployed and recovered (n = 45) geolocators on individuals at a breeding colony in Arctic Alaska during 2011-2015. Black guillemots moved north to the marginal ice zone (MIZ) in the Beaufort and Chukchi seas immediately after breeding, moved south to the Bering Sea during freeze-up in December, and wintered in the Bering Sea January-April. Most birds occupied the MIZ in regions averaging 30-60% sea ice concentration, with little seasonal variation. Birds regularly roosted on ice in all seasons averaging 5 h d(-1), primarily at night. By using the MIZ, with its roosting opportunities and associated prey, black guillemots can remain in the Arctic during winter when littoral waters are completely covered by ice.


Subject(s)
Animal Migration/physiology , Charadriiformes/physiology , Ecosystem , Alaska , Animals , Arctic Regions , Climate Change , Ice Cover
3.
Oecologia ; 157(1): 117-29, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18481094

ABSTRACT

Global warming and the loss of sea ice threaten to alter patterns of productivity in arctic marine ecosystems because of a likely decline in primary productivity by sea ice algae. Estimates of the contribution of ice algae to total primary production range widely, from just 3 to >50%, and the importance of ice algae to higher trophic levels remains unknown. To help answer this question, we investigated a novel approach to food web studies by combining the two established methods of stable isotope analysis and fatty acid (FA) analysis--we determined the C isotopic composition of individual diatom FA and traced these biomarkers in consumers. Samples were collected near Barrow, Alaska and included ice algae, pelagic phytoplankton, zooplankton, fish, seabirds, pinnipeds and cetaceans. Ice algae and pelagic phytoplankton had distinctive overall FA signatures and clear differences in delta(13)C for two specific diatom FA biomarkers: 16:4n-1 (-24.0+/-2.4 and -30.7+/-0.8 per thousand, respectively) and 20:5n-3 (-18.3+/-2.0 and -26.9+/-0.7 per thousand, respectively). Nearly all delta(13)C values of these two FA in consumers fell between the two stable isotopic end members. A mass balance equation indicated that FA material derived from ice algae, compared to pelagic diatoms, averaged 71% (44-107%) in consumers based on delta(13)C values of 16:4n-1, but only 24% (0-61%) based on 20:5n-3. Our estimates derived from 16:4n-1, which is produced only by diatoms, probably best represented the contribution of ice algae relative to pelagic diatoms. However, many types of algae produce 20:5n-3, so the lower value derived from it likely represented a more realistic estimate of the proportion of ice algae material relative to all other types of phytoplankton. These preliminary results demonstrate the potential value of compound-specific isotope analysis of marine lipids to trace C flow through marine food webs and provide a foundation for future work.


Subject(s)
Carbon/analysis , Diatoms/chemistry , Fatty Acids/analysis , Food Chain , Alaska , Animals , Arctic Regions , Biomarkers , Carbon Isotopes , Ice Cover , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...