Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 144(30): 13499-13510, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35862745

ABSTRACT

The unique four-level photocycle characteristics of excited-state intramolecular proton transfer (ESIPT) materials enable population inversion and large spectral separation between absorption and emission through their respective enol and keto forms. This leads to minimal or no self-absorption losses, a favorable feature in acting as an optical gain medium. While conventional ESIPT materials with an enol-keto tautomerism process are widely known, zwitterionic ESIPT materials, particularly those with high photoluminescence, are scarce. Facilitated by the synthesis and characterization of a new family of 2-hydroxyphenyl benzothiazole (HBT) with fluorene substituents, HBT-Fl1 and HBT-Fl2, we herein report the first efficient zwitterionic ESIPT lasing material (HBT-Fl2). The zwitterionic ESIPT HBT-Fl2 not only shows a remarkably low solid-state amplified spontaneous emission (ASE) threshold of 5.3 µJ/cm2 with an ASE peak at 609 nm but also exhibits high ASE photostability. Coupled with its substantially large Stokes shift (≈236 nm ≈10,390 cm-1) and an extremely small overlap of excited-state absorption with ASE emission, comprehensive density functional theory (DFT) and time-dependent DFT studies reveal the zwitterionic characteristics of HBT-Fl2. In opposition to conventional ESIPT with π-delocalized tautomerism as observed in analogue HBT-Fl1 and parent HBT, HBT-Fl2 instead shows charge redistribution in the proton transfer through the fluorene conjugation. This structural motif provides a design tactic in the innovation of new zwitterionic ESIPT materials for efficient light amplification in red and longer-wavelength emission.


Subject(s)
Fluorenes , Protons
2.
Chem Asian J ; 15(21): 3503-3512, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-32910559

ABSTRACT

Three metal-free organic D-π-A dyes with benzothieno[3,2-b]indole as electron donor, cyanoacrylic acid as both electron acceptor and anchoring group with benzene (BID-1), thiophene (BID-2) and furan (BID-3) as π-spacers were designed and synthesized for application in dye-sensitized solar cells (DSSCs). A planar and electron-rich heterocycle such as benzothieno[3,2-b]indole offers better backbone rigidity and improves charge transport properties in comparison to indolo[3,2-b]indole donor, previously reported from our group. Additionally, we synthesized a benzothieno[3,2-b]indole donor grafted with longer alkyl chains which efficiently prevented the approach of oxidized species in the electrolyte coming closer to semiconductor thereby arresting recombination. A power conversion efficiency of 4.11 % was achieved for dye-sensitized solar cells based on the furan π-spacer benzothieno[3,2-b]indole dye BID-3 in comparison to the corresponding indolo[3,2-b]indole dye (IID-3) having an efficiency of 1.71 %. Detailed interfacial electrical measurements along with theoretical calculations disclosed the mechanism of back electron transfer and improvement in photovoltaic performance with respect to variation in both donor and π-spacer.

3.
Chemphyschem ; 20(13): 1752-1758, 2019 07 02.
Article in English | MEDLINE | ID: mdl-30973660

ABSTRACT

The transmission of substituent effect through a variety of spacers, that is to say, alkyl, alkenyl, alkynyl, phenyl, thiophenyl, and polyacene has been studied by modeling Y-G-X type molecular systems (Y: reaction center; G: spacer moiety; X: substituent) using B3LYP/6-31G(d,p) density functional theory calculations. The reaction center is always kept as a C=C double bond and the molecular electrostatic potential (MESP) minimum (Vmin ) observed for this bond showed subtle variation with respect to the changes in the spacer unit and the nature of substituent. Strong linear correlations are observed between Hammett substituent constants (σI and σp ) and Vmin , which recommend the aptness of Vmin as an electronic descriptor to quantify the substituent effect. Since Vmin offers an alternative measure of substituent effect, the correlation between Vmin and σp has been used for assessing the transmission of substituent effect through a variety of spacer moieties. The highest transmission coefficient (γ) is always observed for smaller spacer length. Among all the spacers, alkenyl showed the highest and alkyl showed the lowest transmission power. The study recommends the use of short chains of C=C double, C≡C triple or a combination of both as spacers for the effective transmission of substituent effect to the reaction center.

SELECTION OF CITATIONS
SEARCH DETAIL
...