Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Monit Assess ; 193(5): 259, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33837853

ABSTRACT

Soil salinity is a major issue causing land degradation in coastal areas. In this study, we assessed the land use and soil salinity changes in Djilor district (Senegal) using remote sensing and field data. We performed land use land cover changes for the years 1984, 1994, 2007, and 2017. Electrical conductivity was measured from 300 soil samples collected at the study area; this, together with elevation, distance to river, Normalized Difference Vegetation Index (NDVI), Salinity Index (SI), and Soil-Adjusted Vegetation Index (SAVI), was used to build the salinity model using a multiple regression analysis. Supervised classification and intensity analysis were applied to determine the annual change area and the variation of gains and losses. The results showed that croplands recorded the highest gain (17%) throughout the period 1984-2017, while forest recorded 3%. The fastest annual area of change occurred during the period 1984-1994. The salinity model showed a high potential for mapping saline areas (R2 = 0.73 and RMSE = 0.68). Regarding salinity change, the slightly saline areas (2 < EC < 4 dS/m) increased by 42% whereas highly saline (EC > 8 dS/m) and moderately saline (4 < EC < 8 dS/m) areas decreased by 23% and 26%, respectively, in 2017. Additionally, the increasing salt content is less dominant in vegetated areas compared with non-vegetated areas. Nonetheless, the highly concentrated salty areas can be restored using salt-resistant plants (e.g., Eucalyptus sp., Tamarix sp.). This study gives more insights on land use planning and salinity management for improving farmers' resilience in coastal regions.


Subject(s)
Salinity , Soil , Environmental Monitoring , Rivers , Senegal
2.
Sci Total Environ ; 625: 1309-1320, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29996428

ABSTRACT

The rural landscapes in Central Togo are experiencing severe land degradation, including soil erosion. However, spatially distributed information has scarcely been produced to identify the effects of landscape pattern dynamics on ecosystem services, especially the soil erosion control. In addition, relevant information for sustainable land and soil conservation is still lacking at watershed level. On this basis, using the LAndscape Management and Planning Tool for the Mo River basin (LAMPT_Mo), we (1) modelled soil erosion patterns in relation with land use/cover change (LUCC), land protection regime, and landforms, and (2) examined the efficiency of landscape redesign options on soil erosion amounts at basin scale. We found that Simulated historical net soil loss (NSL) for the Mo basin were approximately 26, 23, 27, and 44t/ha/yr, for 1972, 1987, 2000, and 2014, respectively. These simulated NSLs were higher than the tolerable soil loss limits for the Tropics. Steep slopes (≥15°), poorly covered lands (croplands and savannas), and riversides (distances ≤100m) are critical areas of sediment sources. The local appraisal of soil loss was in line with the simulated outputs even though quantification was not accounted for when dealing with rural illiterate people. Furthermore, results showed that the examined management measures, such as controlling the identified erosion hotspots through land protective measures, could help reduce the NSL up to 70%, to values closer to the tolerable limits for the Tropics. The model implementation in the basin showed insights for identifying erosion hotspots and targeting soil conservation planning and landscape restoration measures.

SELECTION OF CITATIONS
SEARCH DETAIL