Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Microorganisms ; 12(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38543566

ABSTRACT

Ionic silver (Ag+) is being investigated as a residual biocide for use in NASA spacecraft potable water systems on future crewed missions. This water will be used to irrigate future spaceflight crop production systems. We have evaluated the impact of three concentrations (31 ppb, 125 ppb, and 500 ppb) of ionic silver biocide solutions on lettuce in an arcillite (calcinated clay particle substrate) and hydroponic (substrate-less) growth setup after 28 days. Lettuce plant growth was reduced in the hydroponic samples treated with 31 ppb silver and severely stunted for samples treated at 125 ppb and 500 ppb silver. No growth defects were observed in arcillite-grown lettuce. Silver was detectable in the hydroponic-grown lettuce leaves at each concentration but was not detected in the arcillite-grown lettuce leaves. Specifically, when 125 ppb silver water was applied to a hydroponics tray, Ag+ was detected at an average amount of 7 µg/g (dry weight) in lettuce leaves. The increase in Ag+ corresponded with a decrease in several essential elements in the lettuce tissue (Ca, K, P, S). In the arcillite growth setup, silver did not impact the plant root zone microbiome in terms of alpha diversity and relative abundance between treatments and control. However, with increasing silver concentration, the alpha diversity increased in lettuce root samples and in the water from the hydroponics tray samples. The genera in the hydroponic root and water samples were similar across the silver concentrations but displayed different relative abundances. This suggests that ionic silver was acting as a selective pressure for the microbes that colonize the hydroponic water. The surviving microbes likely utilized exudates from the stunted plant roots as a carbon source. Analysis of the root-associated microbiomes in response to silver showed enrichment of metagenomic pathways associated with alternate carbon source utilization, fatty-acid synthesis, and the ppGpp (guanosine 3'-diphosphate 5'-diphosphate) stringent response global regulatory system that operates under conditions of environmental stress. Nutrient solutions containing Ag+ in concentrations greater than 31 ppb in hydroponic systems lacking cation-exchange capacity can severely impact crop production due to stunting of plant growth.

2.
Biofilm ; 5: 100110, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36922940

ABSTRACT

The International Space Station (ISS) Water Processor Assembly (WPA) experiences intermittent dormancy in the WPA wastewater tank during water recycling events which promotes biofilm formation within the system. In this work we aimed to gain a deeper understanding of the impact of nutrient limitation on bacterial growth and biofilm formation under microgravity in support of biofilm mitigation efforts in exploration water recovery systems. A representative species of bacteria that is commonly cultured from the ISS WPA was cultured in an WPA influent water ersatz formulation tailored for microbiological studies. An isolate of Burkholderia contaminans was cultured under a simulated microgravity (SµG) treatment in a vertically rotating high-aspect rotating vessel (HARV) to create the low shear modeled microgravity (LSMMG) environment on a rotating wall vessel (RWV), with a rotating control (R) in the horizontal plane at the predetermined optimal rotation per minute (rpm) speed of 20. Over the course of the growth curve, the bacterial culture in ersatz media was harvested for bacterial counts, and transcriptomic and nutrient content analyses. The cultures under SµG treatment showed a transcriptomic signature indicative of nutrient stress and biofilm formation as compared to the R control treatment. Further analysis of the WPA ersatz over the course of the growth curve suggests that the essential nutrients of the media were consumed faster in the early stages of growth for the SµG treatment and thus approached a nutrient limited growth condition earlier than in the R control culture. The observed limited nutrient response may serve as one element to explain a moderate enhancement of adherent biofilm formation in the SµG treatment after 24 h. While nutrients levels can be modulated, one implication of this investigation is that biofilm mitigation in the ISS environment could benefit from methods such as mixing or the maintenance of minimum flow within a dormant water system in order to force convection and offset the response of microbes to the secondary effects of microgravity.

3.
Front Plant Sci ; 14: 1284529, 2023.
Article in English | MEDLINE | ID: mdl-38162303

ABSTRACT

Outside the protection of Earth's magnetic field, organisms are constantly exposed to space radiation consisting of energetic protons and other heavier charged particles. With the goal of crewed Mars exploration, the production of fresh food during long duration space missions is critical for meeting astronauts' nutritional and psychological needs. However, the biological effects of space radiation on plants have not been sufficiently investigated and characterized. To that end, 10-day-old Arabidopsis seedlings were exposed to simulated Galactic Cosmic Rays (GCR) and assessed for transcriptomic changes. The simulated GCR irradiation was carried out in the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Lab (BNL). The exposures were conducted acutely for two dose points at 40 cGy or 80 cGy, with sequential delivery of proton, helium, oxygen, silicon, and iron ions. Control and irradiated seedlings were then harvested and preserved in RNAlater at 3 hrs post irradiation. Total RNA was isolated for transcriptomic analyses using RNAseq. The data revealed that the transcriptomic responses were dose-dependent, with significant upregulation of DNA repair pathways and downregulation of glucosinolate biosynthetic pathways. Glucosinolates are important for plant pathogen defense and for the taste of a plant, which are both relevant to growing plants for spaceflight. These findings fill in knowledge gaps of how plants respond to radiation in beyond-Earth environments.

4.
Life (Basel) ; 11(10)2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34685431

ABSTRACT

The establishment of steady-state continuous crop production during long-term deep space missions is critical for providing consistent nutritional and psychological benefits for the crew, potentially improving their health and performance. Three technology demonstrations were completed achieving simultaneous multi-species plant growth and the concurrent use of two Veggie units on the International Space Station (ISS). Microbiological characterization using molecular and culture-based methods was performed on leaves and roots from two harvests of three leafy greens, red romaine lettuce (Lactuca sativa cv. 'Outredgeous'); mizuna mustard, (Brassica rapa var japonica); and green leaf lettuce, (Lactuca sativa cv. Waldmann's) and associated rooting pillow components and Veggie chamber surfaces. Culture based enumeration and pathogen screening indicated the leafy greens were safe for consumption. Surface samples of the Veggie facility and plant pillows revealed low counts of bacteria and fungi and are commonly isolated on ISS. Community analysis was completed with 16S rRNA amplicon sequencing. Comparisons between pillow components, and plant tissue types from VEG-03D, E, and F revealed higher diversity in roots and rooting substrate than the leaves and wick. This work provides valuable information for food production-related research on the ISS and the impact of the plant microbiome on this unique closed environment.

5.
BMC Microbiol ; 21(1): 289, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34686151

ABSTRACT

BACKGROUND: Seed sanitization via chemical processes removes/reduces microbes from the external surfaces of the seed and thereby could have an impact on the plants' health or productivity. To determine the impact of seed sanitization on the plants' microbiome and pathogen persistence, sanitized and unsanitized seeds from two leafy green crops, red Romaine lettuce (Lactuca sativa cv. 'Outredgeous') and mizuna mustard (Brassica rapa var. japonica) were exposed to Escherichia coli and grown in controlled environment growth chambers simulating environmental conditions aboard the International Space Station. Plants were harvested at four intervals from 7 days post-germination to maturity. The bacterial communities of leaf and root were investigated using the 16S rRNA sequencing while quantitative polymerase chain reaction (qPCR) and heterotrophic plate counts were used to reveal the persistence of E. coli. RESULT: E. coli was detectable for longer periods of time in plants from sanitized versus unsanitized seeds and was identified in root tissue more frequently than in leaf tissue. 16S rRNA sequencing showed dynamic changes in the abundance of members of the phylum Proteobacteria, Firmicutes, and Bacteroidetes in leaf and root samples of both leafy crops. We observed minimal changes in the microbial diversity of lettuce or mizuna leaf tissue with time or between sanitized and unsanitized seeds. Beta-diversity showed that time had more of an influence on all samples versus the E. coli treatment. CONCLUSION: Our results indicated that the seed surface sanitization, a current requirement for sending seeds to space, could influence the microbiome. Insight into the changes in the crop microbiomes could lead to healthier plants and safer food supplementation.


Subject(s)
Brassica rapa/microbiology , Escherichia coli/growth & development , Lactuca/microbiology , Seeds/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Colony Count, Microbial , Disinfection , Environment, Controlled , Food Contamination/analysis , Food Microbiology , Microbiota , Plant Leaves/microbiology , Plant Roots/microbiology , Time Factors
6.
NPJ Microgravity ; 7(1): 22, 2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34140518

ABSTRACT

Healthy plants are vital for successful, long-duration missions in space, as they provide the crew with life support, food production, and psychological benefits. The microorganisms that associate with plant tissues play a critical role in improving plant health and production. To that end, we developed a methodology to investigate the transcriptional activities of the microbiome of red romaine lettuce, a key salad crop that was grown under International Space Station (ISS)-like conditions. Microbial transcripts enriched from host-microbe total RNA were sequenced using the Oxford Nanopore MinION sequencing platform. Results show that this enrichment approach was highly reproducible and could be an effective approach for the on-site detection of microbial transcriptional activity. Our results demonstrate the feasibility of using metatranscriptomics of enriched microbial RNA as a potential method for on-site monitoring of the transcriptional activity of crop microbiomes, thereby helping to facilitate and maintain plant health for on-orbit space food production.

7.
Front Plant Sci ; 11: 199, 2020.
Article in English | MEDLINE | ID: mdl-32210992

ABSTRACT

The ability to grow safe, fresh food to supplement packaged foods of astronauts in space has been an important goal for NASA. Food crops grown in space experience different environmental conditions than plants grown on Earth (e.g., reduced gravity, elevated radiation levels). To study the effects of space conditions, red romaine lettuce, Lactuca sativa cv 'Outredgeous,' plants were grown in Veggie plant growth chambers on the International Space Station (ISS) and compared with ground-grown plants. Multiple plantings were grown on ISS and harvested using either a single, final harvest, or sequential harvests in which several mature leaves were removed from the plants at weekly intervals. Ground controls were grown simultaneously with a 24-72 h delay using ISS environmental data. Food safety of the plants was determined by heterotrophic plate counts for bacteria and fungi, as well as isolate identification using samples taken from the leaves and roots. Molecular characterization was conducted using Next Generation Sequencing (NGS) to provide taxonomic composition and phylogenetic structure of the community. Leaves were also analyzed for elemental composition, as well as levels of phenolics, anthocyanins, and Oxygen Radical Absorbance Capacity (ORAC). Comparison of flight and ground tissues showed some differences in total counts for bacteria and yeast/molds (2.14 - 4.86 log10 CFU/g), while screening for select human pathogens yielded negative results. Bacterial and fungal isolate identification and community characterization indicated variation in the diversity of genera between leaf and root tissue with diversity being higher in root tissue, and included differences in the dominant genera. The only difference between ground and flight experiments was seen in the third experiment, VEG-03A, with significant differences in the genera from leaf tissue. Flight and ground tissue showed differences in Fe, K, Na, P, S, and Zn content and total phenolic levels, but no differences in anthocyanin and ORAC levels. This study indicated that leafy vegetable crops can produce safe, edible, fresh food to supplement to the astronauts' diet, and provide baseline data for continual operation of the Veggie plant growth units on ISS.

8.
Plant Cell Environ ; 41(5): 1171-1185, 2018 05.
Article in English | MEDLINE | ID: mdl-29194659

ABSTRACT

Members of Stress-Associated Protein (SAP) family in plants have been shown to impart tolerance to multiple abiotic stresses, however, their mode of action in providing tolerance to multiple abiotic stresses is largely unknown. There are 14 SAP genes in Arabidopsis thaliana containing A20, AN1, and Cys2-His2 zinc finger domains. AtSAP13, a member of the SAP family, carries two AN1 zinc finger domains and an additional Cys2-His2 domain. AtSAP13 transcripts showed upregulation in response to Cd, ABA, and salt stresses. AtSAP13 overexpression lines showed strong tolerance to toxic metals (AsIII, Cd, and Zn), drought, and salt stress. Further, transgenic lines accumulated significantly higher amounts of Zn, but less As and Cd accumulation in shoots and roots. AtSAP13 promoter-GUS fusion studies showed GUS expression predominantly in the vascular tissue, hydathodes, and the apical meristem and region of root maturation and elongation as well as the root hairs. At the subcellular level, the AtSAP13-eGFP fusion protein was found to localize in both nucleus and cytoplasm. Through yeast one-hybrid assay, we identified several AP2/EREBP family transcription factors that interacted with the AtSAP13 promoter. AtSAP13 and its homologues will be highly useful for developing climate resilient crops.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , CYS2-HIS2 Zinc Fingers , Gene Expression Regulation, Plant , Nuclear Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Nucleus/metabolism , Cytoplasm/metabolism , Droughts , Genes, Reporter , Nuclear Proteins/genetics , Plants, Genetically Modified , Recombinant Fusion Proteins , Salt Tolerance , Stress, Physiological , Two-Hybrid System Techniques , Zinc Fingers
9.
PLoS One ; 6(6): e20921, 2011.
Article in English | MEDLINE | ID: mdl-21695274

ABSTRACT

We describe here the functional characterization of a novel AtSAP10, a member of the Stress Associated Protein (SAP) gene family, from Arabidopsis thaliana ecotype Columbia. AtSAP10 contains an A20 and AN1 zinc-finger domain at the N- and C-terminal, respectively. Arabidopsis SAP10 showed differential regulation by various abiotic stresses such as heavy metals and metalloids (Ni, Cd, Mn, Zn, and As), high and low temperatures, cold, and ABA. Overexpression of AtSAP10 in Arabidopsis conferred strong tolerance to heavy metals such as Ni, Mn, and Zn and to high temperature stress. AtSAP10 transgenic plants under these stress conditions grew green and healthy, attained several-fold more biomass, and had longer roots as compared to wild type plants. Further, while these transgenic plants accumulated significantly greater amounts of Ni and Mn in both shoots and root tissues, there was no significant difference in the accumulation of Zn. AtSAP10 promoter-GUS fusion studies revealed a root and floral organ-specific expression of AtSAP10. Overexpression of AtSAP10-GFP fusion protein showed the localization in both nucleus and cytoplasm. Taken together, these results showed that AtSAP10 is a potentially useful candidate gene for engineering tolerance to heavy metals and to abiotic stress in cultivated plants.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Heat-Shock Response/genetics , Metals, Heavy/toxicity , Arabidopsis/cytology , Arabidopsis/drug effects , Arabidopsis Proteins/chemistry , DNA, Bacterial/genetics , Gene Expression Regulation, Plant/drug effects , Intracellular Space/drug effects , Intracellular Space/metabolism , Manganese/metabolism , Manganese/toxicity , Metals, Heavy/metabolism , Nickel/metabolism , Nickel/toxicity , Protein Transport/drug effects , Zinc/metabolism , Zinc/toxicity , Zinc Fingers
10.
Biochim Biophys Acta ; 1722(2): 156-67, 2005 Mar 11.
Article in English | MEDLINE | ID: mdl-15715970

ABSTRACT

Two proteinase inhibitors (PIs), CapA1 and CapA2, were purified from Capsicum annum Linn. Var. Phule Jyoti leaves and assessed for their in vitro and in vivo activity against Helicoverpa armigera gut proteinases (HGPs). Both the inhibitors exhibited molecular weights of about 12 kDa with inhibitory activity against bovine trypsin and chymotrypsin indicating presence of probable two-inhibitor repeats of PIN II family. CapA1 and CapA2 inhibited 60-80% HGP (azocaseinolytic) activity of fourth instar larvae feeding on various host plants while 45-65% inhibition of HGP activity of various instars (II to VI) larvae reared on artificial diet. The partial purification of HGP isoforms, their characterization with synthetic inhibitors and inhibition by C. annum PIs revealed that most of the trypsin-like activity (68-91%) of HGPs was sensitive to C. annum PIs while 39-85% chymotrypsin-like activity of HGPs was insensitive to these inhibitors. The feeding of C. annum leaf extracts and two purified PIs in various doses to H. armigera larvae for two successive generations through artificial diet demonstrated their potential in inhibiting larval growth and development, delay in pupation period and dramatic reduction in fecundity and fertility. This is the first report-demonstrating efficacy of C. annum PIs against insect gut proteinases as well as larval growth and development of H. armigera.


Subject(s)
Capsicum , Digestive System/enzymology , Moths/enzymology , Peptide Hydrolases/metabolism , Protease Inhibitors/pharmacology , Analysis of Variance , Animals , Kinetics , Plant Extracts/pharmacology , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL
...