Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Genet Eng Biotechnol ; 21(1): 56, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37162611

ABSTRACT

BACKGROUND: Garlic (Allium sativum L.) is the second most widely cultivated Allium which is mainly grown in temperate regions and used as a flavoring agent in a wide variety of foods. Garlic contains various bioactive compounds whose metabolic pathways, plant-pathogen interactions, defensive genes, identify interaction networks, and functional genomics were not previously predicted in the garlic at the genomic level. To address this issue, we constructed two garlic Illumina 2000 libraries from tissues of garlic clove and leaf. RESULTS: Approximately 43 million 125 bp paired-end reads were obtained in the two libraries. A total of 239,973 contigs were generated by de novo assembly of both samples and were compared with the sequences in the NCBI non-redundant protein database (Nr). In total, 42% of contigs were matched to known proteins in public databases including Nr, Gene Ontology (GO), and Cluster Orthologous Gene Database (COG), and then, contigs were mapped to 138 via functional annotation against the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG). In addition, a number of regulatory genes including the CCHC (Zn) family, followed by WD40, bromodomain, bZIP, AP2-EREBP, BED-type (Zn) proteins, and defense response proteins related to different conserved domains, such as RGA3, NBS-LRR, TIR-NBS-LRR, LRR, NBS-ARC, and CC-NBS-LRR were discovered based on the transcriptome dataset. We compared the ortholog gene family of the A. sativum transcriptome to A. thaliana, O. sativa, and Z. mays and found that 12,077 orthologous gene families are specific to A. sativum L. Furthermore, we identified genes involved in plant defense mechanisms, their protein-protein interaction network, and plant-pathogen interaction pathways. CONCLUSIONS: Our study contains an extensive sequencing and functional gene-annotation analysis of A. sativum L. The findings provide insights into the molecular basis of TFs, defensive genes, and a reference for future studies on the genetics and breeding of A. sativum L.

2.
BMC Bioinformatics ; 18(1): 432, 2017 Sep 30.
Article in English | MEDLINE | ID: mdl-28964253

ABSTRACT

BACKGROUND: Genome-wide microarray has enabled development of robust databases for functional genomics studies in rice. However, such databases do not directly cater to the needs of breeders. Here, we have attempted to develop a web interface which combines the information from functional genomic studies across different genetic backgrounds with DNA markers so that they can be readily deployed in crop improvement. In the current version of the database, we have included drought and salinity stress studies since these two are the major abiotic stresses in rice. RESULTS: RiceMetaSys, a user-friendly and freely available web interface provides comprehensive information on salt responsive genes (SRGs) and drought responsive genes (DRGs) across genotypes, crop development stages and tissues, identified from multiple microarray datasets. 'Physical position search' is an attractive tool for those using QTL based approach for dissecting tolerance to salt and drought stress since it can provide the list of SRGs and DRGs in any physical interval. To identify robust candidate genes for use in crop improvement, the 'common genes across varieties' search tool is useful. Graphical visualization of expression profiles across genes and rice genotypes has been enabled to facilitate the user and to make the comparisons more impactful. Simple Sequence Repeat (SSR) search in the SRGs and DRGs is a valuable tool for fine mapping and marker assisted selection since it provides primers for survey of polymorphism. An external link to intron specific markers is also provided for this purpose. Bulk retrieval of data without any limit has been enabled in case of locus and SSR search. CONCLUSIONS: The aim of this database is to facilitate users with a simple and straight-forward search options for identification of robust candidate genes from among thousands of SRGs and DRGs so as to facilitate linking variation in expression profiles to variation in phenotype. Database URL: http://14.139.229.201.


Subject(s)
Genetic Markers/genetics , Oryza/genetics , Databases, Genetic , Droughts , Internet , Microsatellite Repeats/genetics , Oryza/drug effects , Oryza/growth & development , Sodium Chloride/pharmacology , User-Computer Interface
3.
Interdiscip Sci ; 9(1): 72-79, 2017 Mar.
Article in English | MEDLINE | ID: mdl-26496774

ABSTRACT

MicroRNAs are endogenous small RNAs regulating intrinsic normal growth and development of plant. Discovering miRNAs, their targets and further inferring their functions had become routine process to comprehend the normal biological processes of miRNAs and their roles in plant development. In this study, we used homology-based analysis with available expressed sequence tag of finger millet (Eleusine coracana) to predict conserved miRNAs. Three potent miRNAs targeting 88 genes were identified. The newly identified miRNAs were found to be homologous with miR166 and miR1310. The targets recognized were transcription factors and enzymes, and GO analysis showed these miRNAs played varied roles in gene regulation. The identification of miRNAs and their targets is anticipated to hasten the pace of key epigenetic regulators in plant development.


Subject(s)
Eleusine/genetics , MicroRNAs/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
4.
Gene ; 574(2): 210-6, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26255946

ABSTRACT

MicroRNAs are short non-coding RNAs which play an important role in regulating gene expression by mRNA cleavage or by translational repression. The majority of identified miRNAs were evolutionarily conserved; however, others expressed in a species-specific manner. Finger millet is an important cereal crop; nonetheless, no practical information is available on microRNAs to date. In this study, we have identified 95 conserved microRNAs belonging to 39 families and 3 novel microRNAs by high throughput sequencing. For the identified conserved and novel miRNAs a total of 507 targets were predicted. 11 miRNAs were validated and tissue specificity was determined by stem loop RT-qPCR, Northern blot. GO analyses revealed targets of miRNA were involved in wide range of regulatory functions. This study implies large number of known and novel miRNAs found in Finger millet which may play important role in growth and development.


Subject(s)
Eleusine/genetics , Gene Expression Regulation, Plant , MicroRNAs/genetics , RNA, Plant/genetics , Base Sequence , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Nucleic Acid Conformation , Sequence Analysis, RNA
5.
Bioinformation ; 7(8): 375-8, 2011.
Article in English | MEDLINE | ID: mdl-22347777

ABSTRACT

RNAs Interference plays a very important role in gene silencing. In vitro identification of miRNAs is a slow process as it is difficult to isolate them. Nucleotide sequences of miRNAs are highly conserved among the plants and, this form the key feature behind the identification of miRNAs in plant species by homology alignment. In silico identification of miRNAs from EST database is emerging as a novel, faster and reliable approach. Here EST sequences of Senecio vulgaris (Groundsel) were searched against known miRNA sequences by using BLASTN tool. A total of 10 miRNAs were identified from 1956 EST sequences and 115 GSS sequences. The most stable miRNA identified is svu-mir-1. This approach will accelerate advance research in regulation of gene expression in Groundsel by interfering RNAs.

6.
Funct Integr Genomics ; 7(1): 17-35, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16865332

ABSTRACT

The high-quality rice genome sequence is serving as a reference for comparative genome analysis in crop plants, especially cereals. However, early comparisons with bread wheat showed complex patterns of conserved synteny (gene content) and colinearity (gene order). Here, we show the presence of ancient duplicated segments in the progenitor of wheat, which were first identified in the rice genome. We also show that single-copy (SC) rice genes, those representing unique matches with wheat expressed sequence tag (EST) unigene contigs in the whole rice genome, show more than twice the proportion of genes mapping to syntenic wheat chromosome as compared to the multicopy (MC) or duplicated rice genes. While 58.7% of the 1,244 mapped SC rice genes were located in single syntenic wheat chromosome groups, the remaining 41.3% were distributed randomly to the other six non-syntenic wheat groups. This could only be explained by a background dispersal of genes in the genome through transposition or other unknown mechanism. The breakdown of rice-wheat synteny due to such transpositions was much greater near the wheat centromeres. Furthermore, the SC rice genes revealed a conserved primordial gene order that gives clues to the origin of rice and wheat chromosomes from a common ancestor through polyploidy, aneuploidy, centromeric fusions, and translocations. Apart from the bin-mapped wheat EST contigs, we also compared 56,298 predicted rice genes with 39,813 wheat EST contigs assembled from 409,765 EST sequences and identified 7,241 SC rice gene homologs of wheat. Based on the conserved colinearity of 1,063 mapped SC rice genes across the bins of individual wheat chromosomes, we predicted the wheat bin location of 6,178 unmapped SC rice gene homologs and validated the location of 213 of these in the telomeric bins of 21 wheat chromosomes with 35.4% initial success. This opens up the possibility of directed mapping of a large number of conserved SC rice gene homologs in wheat. Overall, only 46.4% of these SC genes code for proteins with known functional domains; the remaining 53.6% have unknown function, and hence, represent an important, but yet, under explored category of genes.


Subject(s)
Gene Deletion , Gene Duplication , Oryza/genetics , Synteny/genetics , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...