Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Environ Monit Assess ; 196(6): 551, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748260

ABSTRACT

Kathajodi, the principal southern distributary of the Mahanadi River, is the vital source of irrigation and domestic water use for densely populated Cuttack city which receives anthropogenic wastes abundantly. This study assesses the contamination level and primary health status of urban wastewater, and its receiving river Kathajodi based on the physicochemical quality indices employing inductively coupled plasma mass spectroscopy and aligning with guidelines from the United States Environmental Protection Agency (USEPA) and WHO. The high WQI, HPI, and HEI in the catchment area (KJ2, KJ3, and KJ4) indicate poor water quality due to the influx of domestic waste through the primary drainage system and effluents of healthcare units. A high BOD (4.33-19.66 mg L-1) in the catchment indicates high organic matter, animal waste, bacteriological contamination, and low DO, resulting in deterioration of water quality. CR values beyond limits (1.00E - 06 to 1.00E - 04) in three locations of catchment due to higher Cd, Pb, and As indicate significant carcinogenic risk, while high Mn, Cu, and Al content is responsible for several non-carcinogenic ailments and arsenic-induced physiological disorders. The elevated heavy metals Cd, Cu, Fe, Mn, Ni, and Zn, in Kathajodi, could be due to heavy coal combustion, vehicle exhaust, and industrial waste. On the other hand, Cu, Fe, K, and Al could be from agricultural practices, weathered rocks, and crustal materials. Positive significant (p ≤ 0.05) Pearson correlations between physicochemical parameters indicate their common anthropogenic origin and similar chemical characteristics. A strong correlation of PCA between elements and physiological parameters indicates their role in water quality deterioration. Assessing the surface water quality and heavy metal contents from this study will offer critical data to policymakers for monitoring and managing public health concerns.


Subject(s)
Environmental Monitoring , Metals, Heavy , Rivers , Wastewater , Water Pollutants, Chemical , Water Quality , India , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Rivers/chemistry , Metals, Heavy/analysis , Humans , Risk Assessment , Cities , Water Pollution, Chemical/statistics & numerical data
2.
J Hazard Mater ; 471: 134377, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38663298

ABSTRACT

The Ganga is the largest river in India, serves as a lifeline for agriculture, drinking water, and religious rites. However, it became highly polluted due to the influx of industrial wastes and untreated sewages, leading to the decline of aquatic biodiversity. This study investigated the microbial diversity and plastic-xenobiotic degrading enzymes of six sediment metagenomes of river Ganga at Prayagraj (RDG, TSG, SDG) and Devprayag (KRG, BNG, BRG). The water quality parameters, higher values of BOD (1.8-3.7 ppm), COD (23-29.2 ppm) and organic carbon (0.18-0.51%) were recorded at Prayagraj. Comparative analysis of microbial community structure between Prayagraj and Devprayag revealed significant differences between Bacteroidetes and Firmicutes, which emerging as the predominant bacterial phyla across six sediment samples. Notably, their prevalence was highest in the BRG samples. Furthermore, 25 OTUs at genus level were consistent across all six samples. Alpha diversity exhibited minimal variation among samples, while beta diversity indicated an inverse relationship between species richness and diversity. Co-occurrence network analysis established that genera from the same and different groups of phyla show positive co-relations with each other. Thirteen plastic degrading enzymes, including Laccase, Alkane-1 monooxygenase and Alkane monooxygenase, were identified from six sediment metagenomes of river Ganga, which can degrade non-biodegradable plastic viz. Polyethylene, Polystyrene and Low-density Polyethelene. Further, 18 xenobiotic degradation enzymes were identified for the degradation of Bisphenol, Xylene, Toluene, Polycyclic aromatic hydrocarbon, Styrene, Atrazene and Dioxin etc. This is the first report on the identification of non-biodegradable plastic degrading enzymes from sediment metagenomes of river Ganga, India. The findings of this study would help in pollution abatement and sustainable management of riverine ecosystem.


Subject(s)
Bacteria , Biodegradation, Environmental , Geologic Sediments , Rivers , Geologic Sediments/microbiology , Rivers/microbiology , Rivers/chemistry , Bacteria/genetics , Bacteria/enzymology , Biodiversity , Xenobiotics/metabolism , Water Pollutants, Chemical/analysis , India , Plastics , Metagenome , Metagenomics , Benzhydryl Compounds
3.
Antibiotics (Basel) ; 12(12)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38136769

ABSTRACT

The global rise in antibiotic resistance, fueled by indiscriminate antibiotic usage in medicine, aquaculture, agriculture, and the food industry, presents a significant public health challenge. Urban wastewater and sewage treatment plants have become key sources of antibiotic resistance proliferation. The present study focuses on the river Ganges in India, which is heavily impacted by human activities and serves as a potential hotspot for the spread of antibiotic resistance. We conducted a metagenomic analysis of sediment samples from six distinct locations along the river to assess the prevalence and diversity of antibiotic resistance genes (ARGs) within the microbial ecosystem. The metagenomic analysis revealed the predominance of Proteobacteria across regions of the river Ganges. The antimicrobial resistance (AMR) genes and virulence factors were determined by various databases. In addition to this, KEGG and COG analysis revealed important pathways related to AMR. The outcomes highlight noticeable regional differences in the prevalence of AMR genes. The findings suggest that enhancing health and sanitation infrastructure could play a crucial role in mitigating the global impact of AMR. This research contributes vital insights into the environmental aspects of antibiotic resistance, highlighting the importance of targeted public health interventions in the fight against AMR.

4.
Data Brief ; 51: 109648, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37840989

ABSTRACT

Geothermally heated spring water contaminated with decomposed leaf biomass creates unique hot spring ecosystems that support the recycling of diverse nutrients and harbor microbial consortia capable of degrading lignocellulose. We present microbiome and transcriptome data from the bacterial consortium of Deulajhari hot springs, characterized by a temperature of approximately 58 °C and surrounded by a dense population of pandanus plants in Angul, Odisha, India. Metagenomics and metatranscriptomics datasets were generated by extracting total DNA and RNA from the consortium sample of hotspring sediment, followed by shotgun sequencing using the Illumina HiSeq 2500 platform. The metagenomics dataset produced approximately 38,694 contigs, while the metatranscriptomics dataset yielded 9226 contigs, resulting in a total nucleotide size of 89,857,616 and 15,541,403 bps, respectively. Analysis using MEGAN6 against the NCBI "taxonomy" database revealed the presence of 18 and 12 phyla, including candidate phyla, in respective datasets. Proteobacteria exhibited the highest relative abundance in the metagenomics dataset, while Firmicutes was highly abundant in the metatranscriptomics dataset. At the genus level, a total of 92 and 25 genera were predicted in both datasets, with lignocellulose degrading Meiothermus being highly abundant in both metagenomics and metatranscriptomics datasets. We also observed that the unknown bacteria and unidentified sequences were found in significant proportion in the metatranscriptomics dataset. We assembled and functionally annotated approximately 23,960 contigs using the Prokka pipeline. Among the SEED category, the most expressed and annotated microbial genes fall under the unknown category as well as Biotin synthesis and their utilization. Furthermore, some of these genes were implicated in the degradation of aromatic amino acids, D-mannitol, and D-mannose. These findings contribute to our understanding of how the composition and abundance of bacterial communities facilitate lignocellulose degradation in extreme environments and biofuel generation.

5.
Genes (Basel) ; 14(6)2023 06 16.
Article in English | MEDLINE | ID: mdl-37372459

ABSTRACT

Morganella morganii is a Gram-negative opportunistic Enterobacteriaceae pathogen inherently resistant to colistin. This species causes various clinical and community-acquired infections. This study investigated the virulence factors, resistance mechanisms, functional pathways, and comparative genomic analysis of M. morganii strain UM869 with 79 publicly available genomes. The multidrug resistance strain UM869 harbored 65 genes associated with 30 virulence factors, including efflux pump, hemolysin, urease, adherence, toxin, and endotoxin. Additionally, this strain contained 11 genes related to target alteration, antibiotic inactivation, and efflux resistance mechanisms. Further, the comparative genomic study revealed a high genetic relatedness (98.37%) among the genomes, possibly due to the dissemination of genes between adjoining countries. The core proteome of 79 genomes contains the 2692 core, including 2447 single-copy orthologues. Among them, six were associated with resistance to major antibiotic classes manifested through antibiotic target alteration (PBP3, gyrB) and antibiotic efflux (kpnH, rsmA, qacG; rsmA; CRP). Similarly, 47 core orthologues were annotated to 27 virulence factors. Moreover, mostly core orthologues were mapped to transporters (n = 576), two-component systems (n = 148), transcription factors (n = 117), ribosomes (n = 114), and quorum sensing (n = 77). The presence of diversity in serotypes (type 2, 3, 6, 8, and 11) and variation in gene content adds to the pathogenicity, making them more difficult to treat. This study highlights the genetic similarity among the genomes of M. morganii and their restricted emergence, mostly in Asian countries, in addition to their growing pathogenicity and resistance. However, steps must be taken to undertake large-scale molecular surveillance and to direct suitable therapeutic interventions.


Subject(s)
Anti-Bacterial Agents , Genome, Bacterial , Virulence/genetics , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , Drug Resistance, Multiple, Bacterial/genetics , Genomics
6.
3 Biotech ; 13(5): 139, 2023 May.
Article in English | MEDLINE | ID: mdl-37124981

ABSTRACT

In this study, we described the carbapenem bla NDM-5-carrying extensive drug-resistant (XDR) K. pneumoniae ST437 from an urban river water Kathajodi in Odisha, India. The presence of carbapenem and co-occurrence of other resistance determinants (bla NDM-5, bla CTX-M, bla SHV, and bla TEM), virulence factors (fimH, mrkD, entB, irp-1, and ybtS), and capsular serotype (K54) represent its pathogenic potential. The insertion sequence ISAba125 and the bleomycin resistance gene ble MBL at upstream and downstream, respectively, could play a significant role in the horizontal transmission of the bla NDM-5. Its biofilm formation ability contributes toward environmental protection and its survivability. MLST analysis assigned the isolate to ST437 and clonal lineage to ST11 (CC11) with a single locus variant. The ST437 K. pneumoniae, a global epidemic clone, has been reported in North America, Europe, and Asia. This work contributes in understanding of the mechanisms behind the spread of bla NDM-5 K. pneumoniae ST437 and demands extensive molecular surveillance of river and nearby hospitals for better community health. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03556-5.

7.
Genes (Basel) ; 14(5)2023 05 02.
Article in English | MEDLINE | ID: mdl-37239397

ABSTRACT

BACKGROUND: The high prevalence and rapid emergence of antibiotic resistance in high-risk Klebsiella pneumoniae (KP) ST147 clones is a global health concern and warrants molecular surveillance. METHODS: A pangenome analysis was performed using publicly available ST147 complete genomes. The characteristics and evolutionary relationships among ST147 members were investigated through a Bayesian phylogenetic analysis. RESULTS: The large number of accessory genes in the pangenome indicates genome plasticity and openness. Seventy-two antibiotic resistance genes were found to be linked with antibiotic inactivation, efflux, and target alteration. The exclusive detection of the blaOXA-232 gene within the ColKp3 plasmid of KP_SDL79 suggests its acquisition through horizontal gene transfer. The association of seventy-six virulence genes with the acrAB efflux pump, T6SS system and type I secretion system describes its pathogenicity. The presence of Tn6170, a putative Tn7-like transposon in KP_SDL79 with an insertion at the flanking region of the tnsB gene, establishes its transmission ability. The Bayesian phylogenetic analysis estimates ST147's initial divergence in 1951 and the most recent common ancestor for the entire KP population in 1621. CONCLUSIONS: Present study highlights the genetic diversity and evolutionary dynamics of high-risk clones of K. pneumoniae. Further inter-clonal diversity studies will help us understand its outbreak more precisely and pave the way for therapeutic interventions.


Subject(s)
Klebsiella Infections , beta-Lactamases , Humans , beta-Lactamases/genetics , Klebsiella pneumoniae/genetics , Phylogeny , Bayes Theorem , Klebsiella Infections/epidemiology , Klebsiella Infections/genetics , Klebsiella Infections/drug therapy
8.
Life (Basel) ; 13(1)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36676144

ABSTRACT

Primary apical periodontitis occurs due to various insults to the dental pulp including microbial infections, physical and iatrogenic trauma, whereas inadequate elimination of intraradicular infection during root canal treatment may lead to secondary apical periodontitis. We explored the complex intra-radicular microbial communities and their functional potential through genome reconstruction. We applied shotgun metagenomic sequencing, binning and functional profiling to identify the significant contributors to infection at the acute and chronic apical periodontal lesions. Our analysis revealed the five classified clusters representing Enterobacter, Enterococcus, Lacticaseibacillus, Pseudomonas, Streptococcus and one unclassified cluster of contigs at the genus level. Of them, the major contributors were Pseudomonas, with 90.61% abundance in acute conditions, whereas Enterobacter followed by Enterococcus with 69.88% and 15.42% abundance, respectively, in chronic conditions. Enterobacter actively participated in antibiotic target alteration following multidrug efflux-mediated resistance mechanisms, predominant in the chronic stage. The prediction of pathways involved in the destruction of the supportive tissues of the tooth in Enterobacter and Pseudomonas support their crucial role in the manifestation of respective disease conditions. This study provides information about the differential composition of the microbiome in chronic and acute apical periodontitis. It takes a step to interpret the role of a single pathogen, solely or predominantly, in establishing endodontic infection types through genome reconstruction following high throughput metagenomic DNA analysis. The resistome prediction sheds a new light on the therapeutic treatment guidelines for endodontists. However, it needs further conclusive research to support this outcome using a larger number of samples with similar etiological conditions, but different demographic origin.

9.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36688750

ABSTRACT

The present study revealed the emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) and the associated driving factors in an urban river system surrounding Cuttack city, Odisha. The high contamination factor and contamination degree indicate poor water quality. The CRKP isolates showed 100% resistance against piperacillin, amoxicillin-clavulanic acid, piperacillin-tazobactam, ceftriaxone, ceftazidime, meropenem, and imipenem but less resistance to colistin (12.85%). Among the CRKP isolates, carbapenemase genes blaNDM, blaOXA-48-like, and blaKPC were detected in 94.28%, 35%, and 10% of isolates, respectively. The resistance genes (blaNDM, blaTEM, and blaCTX-M) were found to be significantly correlated with toxic metals (As, Cd, Co, Cu, Fe, Mn, Pb) (P < 0.05). Detection of virulence factors (yersiniabactin and aerobactin) and capsular serotypes (K1, K2, and K54 types) explain the pathogenicity of CRKP isolates. Enterobacterial repetitive intergenic consensus-PCR based molecular typing separated the CRKP strains into 13 clusters, of which VI and XI clusters showed similar resistance and virulence determinants, indicating the dissemination of clones from wastewater to the river system. Our results provide first-hand information on assessing risks to public health posed by the CRKP isolates and toxic metals in the Kathajodi River. Molecular surveillance of nearby hospitals for the prevalence of CRKP will help trace their transmission route.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella pneumoniae , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , beta-Lactamases/genetics , Carbapenems , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Piperacillin , Rivers , Wastewater , India
10.
Environ Sci Pollut Res Int ; 30(12): 34101-34114, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36508095

ABSTRACT

Bacteriophages are key viruses that can kill thousands of harmful microbes generally present at polluted sites. Such bacteriophages are abundantly present in the river Ganga, where millions of people in India and abroad drink its water and take baths every day for spiritual reasons. Besides bacteriophages, several pathogenic and zoonotic microbes are present in the river Ganga. It is interesting to study the diversity and abundance of bacteria and their respective phages present in polluted or non-polluted sites. Thus, the metagenomics study was carried out at the most polluted sites of river Ganga near Kanpur and non-polluted sites at Farakka, which harbors several harmful bacteria and their phages. The results revealed a significantly higher percentage of Microviridae phage family, ssDNA viruses, and Mimiviridae virus family near Kanpur than Farakka. In addition, compared to Kanpur, Farakka has a more significant percentage of Myoviridae, an unidentified phage family, and Retroviridae viral families. Despite heavy drainage of untreated and contaminated effluents from the leather industry, pesticide industry, paper mills, metropolitan cities, and other sources, the vast number of said phages kills several harmful pathogenic microbes in polluted sites to maintain the Ganga water's healing power or natural sterility. In a polluted aquatic environment, the varieties of bacteriophages were identified in the Ganga and their interaction with the microbial host. The taxonomic diversity of several bacteriophages found in pathogenic host systems was investigated to get exceptional knowledge of these small viruses in the aquatic environment.


Subject(s)
Bacteriophages , Environmental Monitoring , Humans , Environmental Monitoring/methods , Rivers , India , Bacteria , Water
11.
Front Cell Infect Microbiol ; 12: 933006, 2022.
Article in English | MEDLINE | ID: mdl-35909954

ABSTRACT

For the first time, we describe the whole genome of a yellow-pigmented, capsule-producing, pathogenic, and colistin-resistant Chryseobacterium gallinarum strain MGC42 isolated from a patient with urinary tract infection in India. VITEK 2 automated system initially identified this isolate as C. indologenes. However, 16S rRNA gene sequencing revealed that MGC42 shared 99.67% sequence identity with C. gallinarum-type strain DSM 27622. The draft genome of the strain MGC42 was 4,455,926 bp long with 37.08% Guanine-Cytosine (GC) content and was devoid of any plasmid. Antibiotic resistance, virulence, and toxin genes were predicted by implementing a machine learning classifier. Potential homologs of 340 virulence genes including hemolysin secretion protein D, metalloprotease, catalase peroxidases and autotransporter adhesins, type VI secretion system (T6SS) spike proteins, and 27 toxin factors including a novel toxin domain Ntox23 were identified in the genome. Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs of 110 transporter proteins were predicted that were in agreement with moderate efflux activity. Twelve antibiotic resistance genes including two potentially novel putative ß-lactamase genes sharing low similarity with known ß-lactamase genes were also identified in the genome of this strain. The strain MGC42 was also resistant to several classes of antibiotics along with carbapenems and polymyxin. We also identified mutations in the orthologs of pmrB (M384T) and lpxD (I66V) that might be responsible for colistin resistance. The MGC42 strain shared 683 core genes with other environmental and clinical strains of Chryseobacterium species. Our findings suggest that the strain MGC42 is a multidrug-resistant, virulent pathogen and recommend 16S rRNA gene sequencing to identify clinical specimens of Chryseobacterium species.


Subject(s)
Anti-Bacterial Agents , Chryseobacterium , Colistin , Drug Resistance, Multiple, Bacterial , Flavobacteriaceae Infections , RNA, Ribosomal, 16S , Anti-Bacterial Agents/pharmacology , Chryseobacterium/genetics , Chryseobacterium/isolation & purification , Colistin/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Flavobacteriaceae Infections/drug therapy , Flavobacteriaceae Infections/genetics , Genome, Bacterial/genetics , Humans , Microbial Sensitivity Tests , RNA, Ribosomal, 16S/genetics , beta-Lactamases/genetics
12.
Mar Genomics ; 64: 100967, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35779450

ABSTRACT

Aquaculture is the fast-growing agricultural sector and has the ability to meet the growing demand for protein nutritional security for future population. In future aquaculture is going to be the major source of fish proteins as capture fisheries reached at its maximum. However, several challenges need to overcome such as lack of genetically improved strains/varieties, lack of species-specific feed/functional feed, round the year availability of quality fish seed, pollution of ecosystems and increased frequencies of disease occurrence etc. In recent years, the continuous development of high throughput sequencing technology has revolutionized the biological sciences and provided necessary tools. Application of 'omics' in aquaculture research have been successfully used to resolve several productive and reproductive issues and thus ensure its sustainability and profitability. To date, high quality draft genomes of over fifty fish species have been generated and successfully used to develop large number of single nucleotide polymorphism markers (SNPs), marker panels and other genomic resources etc in several aquaculture species. Similarly, transcriptome profiling and miRNAs analysis have been used in aquaculture research to identify key transcripts and expression analysis of candidate genes/miRNAs involved in reproduction, immunity, growth, development, stress toxicology and disease. Metagenome analysis emerged as a promising scientific tool to analyze the complex genomes contained within microbial communities. Metagenomics has been successfully used in the aquaculture sector to identify novel and potential pathogens, antibiotic resistance genes, microbial roles in microcosms, microbial communities forming biofloc, probiotics etc. In the current review, we discussed application of high-throughput technologies (NGS) in the aquaculture sector.


Subject(s)
Data Analysis , MicroRNAs , Animals , Aquaculture , Ecosystem , Fishes/genetics , Genomics
13.
3 Biotech ; 12(1): 30, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35070620

ABSTRACT

The emergence of colistin-carbapenem-resistant Klebsiella pneumoniae (CCR-Kp) in bloodstream infection results in high mortality, and virulence factor contributes further to the difficulty of treatment. A total of 158 carbapenem-resistant K. pneumoniae (CRKP) isolates causing bloodstream infection were collected from three Indian tertiary care hospitals during the 9-month study period, of which 27 isolates exhibited resistance to both colistin and carbapenem antibiotics. In this study, all the strains were characterized for antimicrobial resistance, virulence factors and capsular serotypes that facilitate the development of colistin and carbapenem-resistant K.pneumoniae (CCR-Kp) in bloodstream infection. Fourteen isolates displayed extremely drug resistance (XDR), susceptible only to tigecycline, and the remaining 13 isolates displayed multidrug resistance (MDR). The gene prevalence analysis for CCR-Kp isolates showed the predominance of bla KPC (81.48%) followed by bla NDM (62.96%), bla VIM (37.03%) and bla IMP (18.51%) genes. The distribution of virulence genes was found to be fimH (81.48%), wabG (59.25%), mrkD (55.56%), entB (48.15%), irp1 (33.33%), and rmpA (18.52%). The capsular serotypes K1, K2, K5 and K54 have been identified in 16 isolates. The absence of plasmid-mediated colistin resistance (mcr) genes implies the involvement of other mechanisms. The ERIC and (GTG)5 molecular typing methods detected 18 and 22 distinct clustering patterns among the CCR-Kp isolates, respectively. A strong correlation between ERIC and (GTG)5 genotyping method was established with antimicrobial resistance patterns and virulence determinants at P < 0.05, while no correlation was found with capsular serotyping. Similar virulence and resistance typing among the isolates suggest hospital-acquired infection in a health care setup. These outcomes will advance our awareness of CCR-Kp outbreaks associated with tertiary care hospitals and help forecast their occurrence in the near future. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-03056-4.

14.
Front Microbiol ; 12: 760573, 2021.
Article in English | MEDLINE | ID: mdl-34899644

ABSTRACT

In the present study, we explored four different geothermal spots of the Deulajhari spring cluster at a proximity of 10-20 meters with temperatures of 43 to 65°C to unravel their genesis, bacterial diversity and CAZyme potential. However, minor variations in physicochemical properties; TOC, sodium, chloride, zinc and nitrate were observed, including the pH of the spring openings. Illumina based amplicon sequencing revealed Firmicutes, Proteobacteria and Chloroflexi as the major bacterial phylum with higher abundance in the DJ04 sample. The alpha diversity of all the springs was almost same, whereas beta diversity revealed variations in the degree of uniqueness of OTUs at different temperatures. Statistical analysis established a positive correlation between sulfur content with Heliobacterium, Thermodesulfovibrio, Thermodesulfobacterium and Herpetosipho as well as TOC and HCO3 with Thermoanaerobacter, Desulfovibrio, Candidatus solibacter and Dehalogenimona. The major hydrocarbon family genes and Carbohydrate Active Enzyme pathways were predicted to be highest in DJ04 with elevated concentrations of HCO3 and TOC. Higher homogeneity in geo-physicochemical and microbial features direct the possibility of the common origin of these springs through plumbing systems. However, the minor variations in diversity and functionality were due to variations in temperature in spring openings through the mixing of subsurface water contaminated with carbohydrates from leaf biomass litter. Functional characterization of the thermophilic bacteria of this spring provides essential scope for further industrial applications. The biogeochemical reasons hypothesized for the genesis of unique multiple openings in the cluster are also of interest to conservation scientists for taking measures toward necessary laws and regulations to protect and preserve these springs.

15.
Int J Mol Sci ; 21(21)2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33142948

ABSTRACT

Although feed cost is the greatest concern in aquaculture, the inclusion of carbohydrates in the fish diet, and their assimilation, are still not well understood in aquaculture species. We identified molecular events that occur due to the inclusion of high carbohydrate levels in the diets of genetically improved 'Jayanti rohu' Labeo rohita. To reveal transcriptional changes in the liver of rohu, a feeding experiment was conducted with three doses of gelatinized starch (20% (control), 40%, and 60%). Transcriptome sequencing revealed totals of 15,232 (4464 up- and 4343 down-regulated) and 15,360 (4478 up- and 4171 down-regulated) differentially expressed genes. Up-regulated transcripts associated with glucose metabolisms, such as hexokinase, PHK, glycogen synthase and PGK, were found in fish fed diets with high starch levels. Interestingly, a de novo lipogenesis mechanism was found to be enriched in the livers of treated fish due to up-regulated transcripts such as FAS, ACCα, and PPARγ. The insulin signaling pathways with enriched PPAR and mTOR were identified by Kyoto Encyclopedia of Genes and Genome (KEGG) as a result of high carbohydrates. This work revealed for the first time the atypical regulation transcripts associated with glucose metabolism and lipogenesis in the livers of Jayanti rohu due to the inclusion of high carbohydrate levels in the diet. This study also encourages the exploration of early nutritional programming for enhancing glucose efficiency in carp species, for sustainable and cost-effective aquaculture production.


Subject(s)
Animals, Genetically Modified/metabolism , Carps/metabolism , Diet, Carbohydrate Loading/adverse effects , Liver/metabolism , Sequence Analysis, RNA/methods , Animals , Animals, Genetically Modified/genetics , Aquaculture/methods , Carbohydrate Metabolism , Carps/genetics , Gene Expression Regulation , Liver/pathology , Signal Transduction , Transcriptome
16.
Genomics ; 112(1): 32-44, 2020 01.
Article in English | MEDLINE | ID: mdl-31325488

ABSTRACT

The role of microRNA in gene regulation during developmental biology has been well depicted in several organisms. The present study was performed to investigate miRNAs role in the liver tissues during carbohydrate metabolism and their targets in the farmed carp rohu, Labeo rohita, which is economically important species in aquaculture. Using Illumina-HiSeq technology, a total of 22,612,316; 44,316,046 and 13,338,434 clean reads were obtained from three small-RNA libraries. We have identified 138 conserved and 161 novel miRNAs and studies revealed that miR-22, miR-122, miR-365, miR-200, and miR-146 are involved in carbohydrate metabolism. Further analysis depicted mature miRNA and their predicted target sites in genes that were involved in developmental biology, cellular activities, transportation, etc. This is the first report of the presence of miRNAs in liver tissue of rohu and their comparative profile linked with metabolism serves as a vital resource as a biomarker.


Subject(s)
Carbohydrate Metabolism/genetics , Carps/genetics , Liver/metabolism , MicroRNAs/metabolism , Animals , Carps/metabolism , Dietary Carbohydrates/administration & dosage , Gene Expression Regulation , Gene Ontology , RNA, Messenger/metabolism , RNA-Seq
17.
Mar Biotechnol (NY) ; 21(5): 589-595, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31346855

ABSTRACT

The liver is an important central organ, which controls carbohydrate metabolism through maintaining glucose homeostasis by a tightly regulated system of genes or enzymes. The microRNAs are small non-coding RNAs playing an important role in the regulation of genes associated with developmental biology, physiology, metabolism, etc. Thus, in this study, we have intended to detect liver-specific microRNAs in farmed carp, Labeo bata, upon being fed a diet with different levels of carbohydrates. Here, we have conducted the experiment for 45 days using fingerlings of farmed carp fed with 20% (control), 40%, and 60% gelatinized starch levels. The liver tissues were collected from each treatment and processed for RNA isolation, small RNA library preparation, and high-throughput sequencing using Illumina NexSeq500. Through sequencing, 15,779,417 reads in 20% CHO, 13,959,039 in 40% CHO, and 13,661,950 in 60% CHO reads were generated for control and treated fishes using three small RNA libraries. We have investigated 445 novel and 231 conserved microRNAs in 20%, 40%, and 60% carbohydrate (CHO), respectively, through computational analysis. The differential expression analysis of miRNAs was carried out between different treatments compared with control and this study depicted 117 known and 114 novel miRNA genes involved in carbohydrate metabolic pathways. Further, target prediction and gene ontology analysis revealed that miRNAs were involved in several pathways such as signaling pathway, G protein pathway, complement receptor-mediated pathway, dopamine receptor signaling pathway, epidermal growth factor pathway, and notch signaling pathway. The predicted miRNA sites in targeted genes were associated with cellular activities, developmental biology, DNA binding, Golgi apparatus, extracellular region, catalytic activity, MAPK cascade, etc. Overall, we have generated a vital resource of liver-specific miRNAs involved in metabolic gene regulation. These studies further will help develop miRNA inhibitors to study their role during carbohydrate metabolism in farmed carp.


Subject(s)
Fish Proteins/genetics , Gene Expression Regulation, Developmental , Liver/drug effects , MicroRNAs/genetics , Starch/administration & dosage , Animal Feed , Animals , Aquaculture , Carps , Diet/methods , Epidermal Growth Factor/genetics , Epidermal Growth Factor/metabolism , Fish Proteins/classification , Fish Proteins/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , High-Throughput Nucleotide Sequencing , Liver/metabolism , MicroRNAs/classification , MicroRNAs/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Molecular Sequence Annotation , Receptors, Complement/genetics , Receptors, Complement/metabolism , Receptors, Dopamine/genetics , Receptors, Dopamine/metabolism , Receptors, Notch/genetics , Receptors, Notch/metabolism , Signal Transduction , Starch/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...