Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IUCrJ ; 4(Pt 3): 215-222, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28512569

ABSTRACT

The perovskite Li0.2Na0.8NbO3 is shown, by powder neutron diffraction, to display a unique sequence of phase transitions at elevated temperature. The ambient temperature polar phase (rhombohedral, space group R3c) transforms via a first-order transition to a polar tetragonal phase (space group P42mc) in the region 150-300°C; these two phases correspond to Glazer tilt systems a-a-a- and a+a+c-, respectively. At 500°C a ferroelectric-paraelectric transition takes place from P42mc to P42/nmc, retaining the a+a+c- tilt. Transformation to a single-tilt system, a0a0c+ (space group P4/mbm), occurs at 750°C, with the final transition to the aristotype cubic phase at 850°C. The P42mc and P42/nmc phases have each been seen only once and twice each, respectively, in perovskite crystallography, in each case in compositions prepared at high pressure.

2.
Chem Commun (Camb) ; 52(73): 10980-3, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27534839

ABSTRACT

NdBaScO4 represents the aristotype structure of a new series of 〈110〉-cut layered perovskites; it is suggested that compositional fine-tuning is likely to produce a family of new geometric ferroelectrics, driven primarily by octahedral tilting.

3.
Dalton Trans ; 44(23): 10673-80, 2015 Jun 21.
Article in English | MEDLINE | ID: mdl-25629659

ABSTRACT

The layered perovskite LaTaO(4) has been prepared in its polar orthorhombic polymorphic form at ambient temperature. Although no structural phase transition is observed in the temperature interval 25° C < T < 500 °C, a very large axial thermal contraction effect is seen, which can be ascribed to an anomalous buckling of the perovskite octahedral layer. The non-polar monoclinic polymorph can be stabilised at ambient temperature by Nd-doping. A composition La(0.90)Nd(0.10)TaO(4) shows a first-order monoclinic-orthorhombic (non-polar to polar) transition in the region 250° C < T < 350 °C. Dielectric responses are observed at both the above structural events but, despite the 'topological ferroelectric' nature of orthorhombic LaTaO(4), we have not succeeded in obtaining ferroelectric P-E hysteresis behaviour. Structural relationships in the wider family of A(n)B(n)X(3n+2) layered perovskites are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...