Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
BMC Cancer ; 24(1): 201, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38350888

ABSTRACT

BACKGROUND: For patients with liver-confined metastatic colorectal cancer (mCRC), local therapy of isolated metastases has been associated with long-term progression-free and overall survival (OS). However, for patients with more advanced mCRC, including those with extrahepatic disease, the efficacy of local therapy is less clear although increasingly being used in clinical practice. Prospective studies to clarify the role of metastatic-directed therapies in patients with mCRC are needed. METHODS: The Evaluating Radiation, Ablation, and Surgery (ERASur) A022101/NRG-GI009 trial is a randomized, National Cancer Institute-sponsored phase III study evaluating if the addition of metastatic-directed therapy to standard of care systemic therapy improves OS in patients with newly diagnosed limited mCRC. Eligible patients require a pathologic diagnosis of CRC, have BRAF wild-type and microsatellite stable disease, and have 4 or fewer sites of metastatic disease identified on baseline imaging. Liver-only metastatic disease is not permitted. All metastatic lesions must be amenable to total ablative therapy (TAT), which includes surgical resection, microwave ablation, and/or stereotactic ablative body radiotherapy (SABR) with SABR required for at least one lesion. Patients without overt disease progression after 16-26 weeks of first-line systemic therapy will be randomized 1:1 to continuation of systemic therapy with or without TAT. The trial activated through the Cancer Trials Support Unit on January 10, 2023. The primary endpoint is OS. Secondary endpoints include event-free survival, adverse events profile, and time to local recurrence with exploratory biomarker analyses. This study requires a total of 346 evaluable patients to provide 80% power with a one-sided alpha of 0.05 to detect an improvement in OS from a median of 26 months in the control arm to 37 months in the experimental arm with a hazard ratio of 0.7. The trial uses a group sequential design with two interim analyses for futility. DISCUSSION: The ERASur trial employs a pragmatic interventional design to test the efficacy and safety of adding multimodality TAT to standard of care systemic therapy in patients with limited mCRC. TRIAL REGISTRATION: ClinicalTrials.gov: NCT05673148, registered December 21, 2022.


Subject(s)
Colonic Neoplasms , Liver Neoplasms , Radiosurgery , Rectal Neoplasms , Humans , Prospective Studies , Radiosurgery/methods , Liver Neoplasms/therapy
2.
Nature ; 624(7991): 366-377, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092913

ABSTRACT

Cytosine DNA methylation is essential in brain development and is implicated in various neurological disorders. Understanding DNA methylation diversity across the entire brain in a spatial context is fundamental for a complete molecular atlas of brain cell types and their gene regulatory landscapes. Here we used single-nucleus methylome sequencing (snmC-seq3) and multi-omic sequencing (snm3C-seq)1 technologies to generate 301,626 methylomes and 176,003 chromatin conformation-methylome joint profiles from 117 dissected regions throughout the adult mouse brain. Using iterative clustering and integrating with companion whole-brain transcriptome and chromatin accessibility datasets, we constructed a methylation-based cell taxonomy with 4,673 cell groups and 274 cross-modality-annotated subclasses. We identified 2.6 million differentially methylated regions across the genome that represent potential gene regulation elements. Notably, we observed spatial cytosine methylation patterns on both genes and regulatory elements in cell types within and across brain regions. Brain-wide spatial transcriptomics data validated the association of spatial epigenetic diversity with transcription and improved the anatomical mapping of our epigenetic datasets. Furthermore, chromatin conformation diversities occurred in important neuronal genes and were highly associated with DNA methylation and transcription changes. Brain-wide cell-type comparisons enabled the construction of regulatory networks that incorporate transcription factors, regulatory elements and their potential downstream gene targets. Finally, intragenic DNA methylation and chromatin conformation patterns predicted alternative gene isoform expression observed in a whole-brain SMART-seq2 dataset. Our study establishes a brain-wide, single-cell DNA methylome and 3D multi-omic atlas and provides a valuable resource for comprehending the cellular-spatial and regulatory genome diversity of the mouse brain.


Subject(s)
Brain , DNA Methylation , Epigenome , Multiomics , Single-Cell Analysis , Animals , Mice , Brain/cytology , Brain/metabolism , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Cytosine/metabolism , Datasets as Topic , Transcription Factors/metabolism , Transcription, Genetic
3.
Nat Commun ; 14(1): 6943, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37932264

ABSTRACT

Chromatin conformation reorganization is emerging as an important layer of regulation for gene expression and lineage specification. Yet, how lineage-specific transcription factors contribute to the establishment of cell type-specific 3D chromatin architecture in the immune cells remains unclear, especially for the late stages of T cell subset differentiation and maturation. Regulatory T cells (Treg) are mainly generated in the thymus as a subpopulation of T cells specializing in suppressing excessive immune responses. Here, by comprehensively mapping 3D chromatin organization during Treg cell differentiation, we show that Treg-specific chromatin structures were progressively established during its lineage specification, and highly associated with Treg signature gene expression. Additionally, the binding sites of Foxp3, a Treg lineage specifying transcription factor, were highly enriched at Treg-specific chromatin loop anchors. Further comparison of the chromatin interactions between wide-type Tregs versus Treg cells from Foxp3 knock-in/knockout or newly-generated Foxp3 domain-swap mutant mouse revealed that Foxp3 was essential for the establishment of Treg-specific 3D chromatin architecture, although it was not dependent on the formation of the Foxp3 domain-swapped dimer. These results highlighted an underappreciated role of Foxp3 in modulating Treg-specific 3D chromatin structure formation.


Subject(s)
Chromatin , T-Lymphocytes, Regulatory , Mice , Animals , Chromatin/metabolism , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Cell Differentiation/genetics
4.
Nat Genet ; 55(12): 2189-2199, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37945900

ABSTRACT

Circular extrachromosomal DNA (ecDNA) in patient tumors is an important driver of oncogenic gene expression, evolution of drug resistance and poor patient outcomes. Applying computational methods for the detection and reconstruction of ecDNA across a retrospective cohort of 481 medulloblastoma tumors from 465 patients, we identify circular ecDNA in 82 patients (18%). Patients with ecDNA-positive medulloblastoma were more than twice as likely to relapse and three times as likely to die within 5 years of diagnosis. A subset of tumors harbored multiple ecDNA lineages, each containing distinct amplified oncogenes. Multimodal sequencing, imaging and CRISPR inhibition experiments in medulloblastoma models reveal intratumoral heterogeneity of ecDNA copy number per cell and frequent putative 'enhancer rewiring' events on ecDNA. This study reveals the frequency and diversity of ecDNA in medulloblastoma, stratified into molecular subgroups, and suggests copy number heterogeneity and enhancer rewiring as oncogenic features of ecDNA.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Neoplasms , Humans , DNA, Circular , Medulloblastoma/genetics , Retrospective Studies , Neoplasms/genetics , Oncogenes , Cerebellar Neoplasms/genetics
5.
Cancers (Basel) ; 15(16)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37627145

ABSTRACT

Metastatic colorectal cancer (mCRC) is a heterogeneous disease that can evoke discordant responses to therapy among different lesions in individual patients. The Response Evaluation Criteria in Solid Tumors (RECIST) criteria do not take into consideration response heterogeneity. We explored and developed lesion-based measurement response criteria to evaluate their prognostic effect on overall survival (OS). PATIENTS AND METHODS: Patients enrolled in 17 first-line clinical trials, who had mCRC with ≥ 2 lesions at baseline, and a restaging scan by 12 weeks were included. For each patient, lesions were categorized as a progressing lesion (PL: > 20% increase in the longest diameter (LD)), responding lesion (RL: > 30% decrease in LD), or stable lesion (SL: neither PL nor RL) based on the 12-week scan. Lesion-based response criteria were defined for each patient as follows: PL only, SL only, RL only, and varied responses (mixture of RL, SL, and PL). Lesion-based response criteria and OS were correlated using stratified multivariable Cox models. The concordance between OS and classifications was measured using the C statistic. RESULTS: Among 10,551 patients with mCRC from 17 first-line studies, varied responses were noted in 51.6% of patients, among whom, 3.3% had RL/PL at 12 weeks. Among patients with RL/SL, 52% had stable disease (SD) by RECIST 1.1, and they had a longer OS (median OS (mOS) = 19.9 months) than those with SL only (mOS = 16.8 months, HR (95% CI) = 0.81 (0.76, 0.85), p < 0.001), although a shorter OS than those with RL only (mOS = 25.8 months, HR (95% CI) = 1.42 (1.32, 1.53), p < 0.001). Among patients with SL/PL, 74% had SD by RECIST 1.1, and they had a longer OS (mOS = 9.0 months) than those with PL only (mOS = 8.0 months, HR (95% CI) = 0.75 (0.57, 0.98), p = 0.040), yet a shorter OS than those with SL only (mOS = 16.8 months, HR (95% CI) = 1.98 (1.80, 2.18), p < 0.001). These associations were consistent across treatment regimen subgroups. The lesion-based response criteria showed slightly higher concordance than RECIST 1.1, although it was not statistically significant. CONCLUSION: Varied responses at first restaging are common among patients receiving first-line therapy for mCRC. Our lesion-based measurement criteria allowed for better mortality discrimination, which could potentially be informative for treatment decision-making and influence patient outcomes.

6.
bioRxiv ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37131654

ABSTRACT

Cytosine DNA methylation is essential in brain development and has been implicated in various neurological disorders. A comprehensive understanding of DNA methylation diversity across the entire brain in the context of the brain's 3D spatial organization is essential for building a complete molecular atlas of brain cell types and understanding their gene regulatory landscapes. To this end, we employed optimized single-nucleus methylome (snmC-seq3) and multi-omic (snm3C-seq1) sequencing technologies to generate 301,626 methylomes and 176,003 chromatin conformation/methylome joint profiles from 117 dissected regions throughout the adult mouse brain. Using iterative clustering and integrating with companion whole-brain transcriptome and chromatin accessibility datasets, we constructed a methylation-based cell type taxonomy that contains 4,673 cell groups and 261 cross-modality-annotated subclasses. We identified millions of differentially methylated regions (DMRs) across the genome, representing potential gene regulation elements. Notably, we observed spatial cytosine methylation patterns on both genes and regulatory elements in cell types within and across brain regions. Brain-wide multiplexed error-robust fluorescence in situ hybridization (MERFISH2) data validated the association of this spatial epigenetic diversity with transcription and allowed the mapping of the DNA methylation and topology information into anatomical structures more precisely than our dissections. Furthermore, multi-scale chromatin conformation diversities occur in important neuronal genes, highly associated with DNA methylation and transcription changes. Brain-wide cell type comparison allowed us to build a regulatory model for each gene, linking transcription factors, DMRs, chromatin contacts, and downstream genes to establish regulatory networks. Finally, intragenic DNA methylation and chromatin conformation patterns predicted alternative gene isoform expression observed in a companion whole-brain SMART-seq3 dataset. Our study establishes the first brain-wide, single-cell resolution DNA methylome and 3D multi-omic atlas, providing an unparalleled resource for comprehending the mouse brain's cellular-spatial and regulatory genome diversity.

7.
Nat Commun ; 14(1): 2300, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085539

ABSTRACT

Ependymoma is a tumor of the brain or spinal cord. The two most common and aggressive molecular groups of ependymoma are the supratentorial ZFTA-fusion associated and the posterior fossa ependymoma group A. In both groups, tumors occur mainly in young children and frequently recur after treatment. Although molecular mechanisms underlying these diseases have recently been uncovered, they remain difficult to target and innovative therapeutic approaches are urgently needed. Here, we use genome-wide chromosome conformation capture (Hi-C), complemented with CTCF and H3K27ac ChIP-seq, as well as gene expression and DNA methylation analysis in primary and relapsed ependymoma tumors, to identify chromosomal conformations and regulatory mechanisms associated with aberrant gene expression. In particular, we observe the formation of new topologically associating domains ('neo-TADs') caused by structural variants, group-specific 3D chromatin loops, and the replacement of CTCF insulators by DNA hyper-methylation. Through inhibition experiments, we validate that genes implicated by these 3D genome conformations are essential for the survival of patient-derived ependymoma models in a group-specific manner. Thus, this study extends our ability to reveal tumor-dependency genes by 3D genome conformations even in tumors that lack targetable genetic alterations.


Subject(s)
Ependymoma , Neoplasm Recurrence, Local , Child , Humans , Child, Preschool , Neoplasm Recurrence, Local/genetics , Chromosomes , Chromosome Mapping , Ependymoma/genetics , Ependymoma/pathology , Genome , Chromatin/genetics
8.
bioRxiv ; 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36865315

ABSTRACT

Chromatin conformation reorganization is emerging as an important layer of regulation for gene expression and lineage specification. Yet, how lineage-specific transcription factors contribute to the establishment of cell type-specific 3D chromatin architecture in the immune cells remains unclear, especially for the late stages of T cell subset differentiation and maturation. Regulatory T cells (Treg) are mainly generated in the thymus as a subpopulation of T cells specializing in suppressing excessive immune responses. Here, by comprehensively mapping 3D chromatin organization during Treg cell differentiation, we show that Treg-specific chromatin structures were progressively established during its lineage specification, and highly associated with Treg signature gene expression. Additionally, the binding sites of Foxp3, a Treg lineage specifying transcription factor, were highly enriched at Treg-specific chromatin loop anchors. Further comparison of the chromatin interactions between wide-type Tregs versus Treg cells from Foxp3 knock-in/knockout or newly-generated Foxp3 domain-swap mutant mouse revealed that Foxp3 was essential for the establishment of Treg-specific 3D chromatin architecture, although it was not dependent on the formation of the Foxp3 domain-swapped dimer. These results highlighted an underappreciated role of Foxp3 in modulating Treg-specific 3D chromatin structure formation.

10.
Res Sq ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38196590

ABSTRACT

Background: For patients with liver-confined metastatic colorectal cancer (mCRC), local therapy of isolated metastases has been associated with long-term progression-free and overall survival (OS). However, for patients with more advanced mCRC, including those with extrahepatic disease, the efficacy of local therapy is less clear although increasingly being used in clinical practice. Prospective studies to clarify the role of metastatic-directed therapies in patients with mCRC are needed. Methods: The Evaluating Radiation, Ablation, and Surgery (ERASur) A022101/NRG-GI009 trial is a randomized, National Cancer Institute-sponsored phase III study evaluating if the addition of metastatic-directed therapy to standard of care systemic therapy improves OS in patients with newly diagnosed limited mCRC. Eligible patients require a pathologic diagnosis of CRC, have BRAF wild-type and microsatellite stable disease, and have 4 or fewer sites of metastatic disease identified on baseline imaging. Liver-only metastatic disease is not permitted. All metastatic lesions must be amenable to total ablative therapy (TAT), which includes surgical resection, microwave ablation, and/or stereotactic ablative body radiotherapy (SABR) with SABR required for at least one lesion. Patients without overt disease progression after 16-26 weeks of first-line systemic therapy will be randomized 1:1 to continuation of systemic therapy with or without TAT. The trial activated through the Cancer Trials Support Unit on January 10, 2023. The primary endpoint is OS. Secondary endpoints include event-free survival, adverse events profile, and time to local recurrence with exploratory biomarker analyses. This study requires a total of 346 evaluable patients to provide 80% power with a one-sided alpha of 0.05 to detect an improvement in OS from a median of 26 months in the control arm to 37 months in the experimental arm with a hazard ratio of 0.7. The trial uses a group sequential design with two interim analyses for futility. Discussion: The ERASur trial employs a pragmatic interventional design to test the efficacy and safety of adding multimodality TAT to standard of care systemic therapy in patients with limited mCRC.

11.
Nature ; 612(7940): 564-572, 2022 12.
Article in English | MEDLINE | ID: mdl-36477537

ABSTRACT

Higher-order chromatin structure is important for the regulation of genes by distal regulatory sequences1,2. Structural variants (SVs) that alter three-dimensional (3D) genome organization can lead to enhancer-promoter rewiring and human disease, particularly in the context of cancer3. However, only a small minority of SVs are associated with altered gene expression4,5, and it remains unclear why certain SVs lead to changes in distal gene expression and others do not. To address these questions, we used a combination of genomic profiling and genome engineering to identify sites of recurrent changes in 3D genome structure in cancer and determine the effects of specific rearrangements on oncogene activation. By analysing Hi-C data from 92 cancer cell lines and patient samples, we identified loci affected by recurrent alterations to 3D genome structure, including oncogenes such as MYC, TERT and CCND1. By using CRISPR-Cas9 genome engineering to generate de novo SVs, we show that oncogene activity can be predicted by using 'activity-by-contact' models that consider partner region chromatin contacts and enhancer activity. However, activity-by-contact models are only predictive of specific subsets of genes in the genome, suggesting that different classes of genes engage in distinct modes of regulation by distal regulatory elements. These results indicate that SVs that alter 3D genome organization are widespread in cancer genomes and begin to illustrate predictive rules for the consequences of SVs on oncogene activation.


Subject(s)
Genomic Structural Variation , Neoplasms , Oncogene Proteins , Oncogenes , Humans , Chromatin/genetics , Gene Rearrangement/genetics , Genomic Structural Variation/genetics , Neoplasms/genetics , Neoplasms/pathology , Oncogenes/genetics , Oncogene Proteins/chemistry , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Chromosomes, Human/genetics , Cell Line, Tumor , Enhancer Elements, Genetic/genetics , Models, Genetic
12.
iScience ; 25(12): 105490, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36505924

ABSTRACT

It is unclear how the activation of HIV-1 transcription affects chromatin structure. We interrogated chromatin organization both genome-wide and nearby HIV-1 integration sites using Hi-C and ATAC-seq. In conjunction, we analyzed the transcription of the HIV-1 genome and neighboring genes. We found that long-range chromatin contacts did not differ significantly between uninfected cells and those harboring an integrated HIV-1 genome, whether the HIV-1 genome was actively transcribed or inactive. Instead, the activation of HIV-1 transcription changes chromatin accessibility immediately downstream of the provirus, demonstrating that HIV-1 can alter local cellular chromatin structure. Finally, we examined HIV-1 and neighboring host gene transcripts with long-read sequencing and found populations of chimeric RNAs both virus-to-host and host-to-virus. Thus, multiomics profiling revealed that the activation of HIV-1 transcription led to local changes in chromatin organization and altered the expression of neighboring host genes.

13.
Clin Lymphoma Myeloma Leuk ; 22(11): e1009-e1018, 2022 11.
Article in English | MEDLINE | ID: mdl-36045021

ABSTRACT

INTRODUCTION/BACKGROUND: Leveraging the Follicular Lymphoma Analysis of Surrogacy Hypothesis database of individual patient data from first-line clinical trials, we studied the clinical course of follicular lymphoma (FL) and investigated clinical factors associated with FL outcomes. PATIENTS AND METHODS: We examined 2428 patients from 8 randomized trials using multistate survival models with 4 states: induction treatment, progression, death from FL, and death from other causes. We utilized Aalen-Johansen estimator and Cox models to assess the likelihood of FL outcomes and quantify predictors' effects. RESULTS: Two-year progression, FL-related death, and death from other causes estimates were 26.5%, 3.4% and 1.4%, respectively. FL-associated deaths were the primary cause of mortality within 10 years of follow-up. Male sex (hazard ratio: 1.25; 95% confidence interval: 1.05-1.47), > 4 involved nodal areas (1.51; 1.23-1.86), elevated LDH (1.20; 1.01-1.43), low hemoglobin (1.44; 1.15-1.81), and elevated ß-2 levels (1.23; 1.02-1.47) increased risk of progression. CD20-targeting agents reduced risks for progression (0.29; 0.22-0.39), death from FL (0.05; 0.01-0.20), and death from other causes without progression (0.13; 0.05-0.33) and following progression (0.52; 0.30-0.92). Estimated 2-year progression rates were 22.3% and 43.5% with or without CD20-targeting agents, respectively. Two-year FL-associated mortality rate was 8.3% among patients without CD20-targeting agents, 5.4% with B-symptoms, 4.9% with elevated LDH, and 9.1% with low hemoglobin. CONCLUSION: This study identified independent contributions of baseline clinical factors to distinct outcomes for patients with FL following first-line therapy on a clinical trial. Similar analytical approaches are needed to increase understanding of factors that influence FL outcomes in other settings.


Subject(s)
Antineoplastic Agents , Lymphoma, Follicular , Humans , Male , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Hemoglobins/therapeutic use , Lymphoma, Follicular/drug therapy , Randomized Controlled Trials as Topic , Rituximab/therapeutic use , Survival Analysis
14.
J Biol Chem ; 298(8): 102117, 2022 08.
Article in English | MEDLINE | ID: mdl-35691341

ABSTRACT

In mammalian organisms, enhancers can regulate transcription from great genomic distances. How enhancers affect distal gene expression has been a major question in the field of gene regulation. One model to explain how enhancers communicate with their target promoters, the chromatin looping model, posits that enhancers and promoters come in close spatial proximity to mediate communication. Chromatin looping has been broadly accepted as a means for enhancer-promoter communication, driven by accumulating in vitro and in vivo evidence. The genome is now known to be folded into a complex 3D arrangement, created and maintained in part by the interplay of the Cohesin complex and the DNA-binding protein CTCF. In the last few years, however, doubt over the relationship between looping and transcriptional activation has emerged, driven by studies finding that only a modest number of genes are perturbed with acute degradation of looping machinery components. In parallel, newer models describing distal enhancer action have also come to prominence. In this article, we explore the emergence and development of the looping model as a means for enhancer-promoter communication and review the contrasting evidence between historical gene-specific and current global data for the role of chromatin looping in transcriptional regulation. We also discuss evidence for alternative models to chromatin looping and their support in the literature. We suggest that, while there is abundant evidence for chromatin looping as a major mechanism for enhancer function, enhancer-promoter communication is likely mediated by more than one mechanism in an enhancer- and context-dependent manner.


Subject(s)
Chromatin , Enhancer Elements, Genetic , Promoter Regions, Genetic , Animals , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Chromatin/genetics , Chromatin Assembly and Disassembly , Mammals
15.
Br J Haematol ; 198(2): 333-337, 2022 07.
Article in English | MEDLINE | ID: mdl-35491747

ABSTRACT

Progression-free survival (PFS) has been the regulatory primary end-point for recent phase III trials in first-line follicular lymphoma (FL), but requires prolonged follow-up. Complete response (CR) at 30 months after initiation of induction treatment was validated as surrogate end-point for PFS. Our objective was to further evaluate surrogacy of CR measured by [18 F] fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging at the end of induction (EoI). Individual patient data were analysed from 1505 patients from five randomized trials. Trial-level surrogacy examining the association between treatment effects on EoI-PET-CR and PFS was evaluated using linear regression ( RWLS2 ) and bivariate Copula ( RCopula2 ) models. Although EoI-PET-CR strongly predicted PFS at a prognostic level, the trial-level assessment did not show strong correlation ( RWLS2=0.56 , confidence interval [CI]: 0.20-0.88; RCopula2=0.35 , CI: 0.0-0.82). The high uncertainty in estimation was possibly due to the small number of trials and the population of patients with available PET data. Maintenance therapy affecting PFS beyond induction treatment, but not EoI-PET-CR end-point, may have distorted the association between treatment effects. However, there will probably be a number of additional trials approaching completion with available PET response data. Refined evaluation of PET-CR based surrogate end-points is still warranted.


Subject(s)
Lymphoma, Follicular , Antineoplastic Combined Chemotherapy Protocols , Biomarkers , Disease-Free Survival , Fluorodeoxyglucose F18/therapeutic use , Humans , Lymphoma, Follicular/diagnostic imaging , Lymphoma, Follicular/drug therapy , Positron-Emission Tomography , Progression-Free Survival , Randomized Controlled Trials as Topic , Remission Induction
16.
Cell Genom ; 2(3)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35419551

ABSTRACT

Single-cell technologies measure unique cellular signatures but are typically limited to a single modality. Computational approaches allow the fusion of diverse single-cell data types, but their efficacy is difficult to validate in the absence of authentic multi-omic measurements. To comprehensively assess the molecular phenotypes of single cells, we devised single-nucleus methylcytosine, chromatin accessibility, and transcriptome sequencing (snmCAT-seq) and applied it to postmortem human frontal cortex tissue. We developed a cross-validation approach using multi-modal information to validate fine-grained cell types and assessed the effectiveness of computational data fusion methods. Correlation analysis in individual cells revealed distinct relations between methylation and gene expression. Our integrative approach enabled joint analyses of the methylome, transcriptome, chromatin accessibility, and conformation for 63 human cortical cell types. We reconstructed regulatory lineages for cortical cell populations and found specific enrichment of genetic risk for neuropsychiatric traits, enabling the prediction of cell types that are associated with diseases.

17.
Blood ; 139(11): 1684-1693, 2022 03 17.
Article in English | MEDLINE | ID: mdl-34614146

ABSTRACT

Observational studies and stand-alone trials indicate that patients with follicular lymphoma (FL) who experience disease progression within 24 months of front-line chemoimmunotherapy (POD24), have poor outcomes. We performed a pooled analysis of 13 randomized clinical trials of patients with FL in the pre- and postrituximab eras to identify clinical factors that predict POD24. Logistic regression models evaluated the association between clinical factors and POD24. Cox regression evaluated the association between POD24 as a time-dependent factor and subsequent overall survival (OS). A landmark analysis evaluated the association of POD24 with OS for the subset of patients who were alive at 24 months after trial registration. Patients without progression at 24 months at baseline had favorable performance status (PS), limited-stage (I/II) disease, low-risk FL International Prognostic Index (FLIPI) score, normal baseline hemoglobin, and normal baseline ß2 microglobulin (B2M) level. In a multivariable logistic regression model, male sex (odds ratio [OR], 1.30), PS ≥2 (OR, 1.63), B2M (≥3 mg/L; OR, 1.43), and high-risk FLIPI score (3-5; OR, 3.14) were associated with increased risk of progression before 24 months. In the time-dependent Cox model and the 24-month landmark analysis, POD24 was associated with poor subsequent OS (hazard ratio, 4.85 and 3.06, respectively). This is the largest pooled analysis of clinical trials data validating POD24 as a robust indicator of poor FL survival and identified clinical predictors of early death and progression that can aid in building comprehensive prognostic models incorporating clinical and molecular predictors of POD24.


Subject(s)
Lymphoma, Follicular , Antineoplastic Combined Chemotherapy Protocols , Disease Progression , Humans , Immunotherapy , Lymphoma, Follicular/diagnosis , Lymphoma, Follicular/drug therapy , Male , Prognosis , Risk Factors
18.
Methods Mol Biol ; 2301: 143-161, 2022.
Article in English | MEDLINE | ID: mdl-34415534

ABSTRACT

Structural variations (SVs) are large genomic rearrangements that can be challenging to identify with current short read sequencing technology due to various confounding factors such as existence of genomic repeats and complex SV structures. Hi-C breakfinder is the first computational tool that utilizes the technology of high-throughput chromatin conformation capture assay (Hi-C) to systematically identify SVs, without being interfered by regular confounding factors. SVs change the spatial distance of genomic regions and cause discontinuous signals in Hi-C, which are difficult to analyze by routine informatics practice. Here we provide step-by-step guidance for how to identify SVs using Hi-C data and how to reconstruct Hi-C maps in the presence of SVs.


Subject(s)
Genomics , Neoplasms , Chromatin , Chromosomes , Genome , High-Throughput Nucleotide Sequencing , Humans , Neoplasms/genetics , Software
19.
J Natl Cancer Inst ; 114(1): 60-67, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34505880

ABSTRACT

BACKGROUND: Disease-free survival (DFS) with a 3-year median follow-up (3-year DFS) was validated as a surrogate for overall survival (OS) with a 5-year median follow-up (5-year OS) in adjuvant chemotherapy colon cancer (CC) trials. Recent data show further improvements in OS and survival after recurrence in patients who received adjuvant FOLFOX. Hence, reevaluation of the association between DFS and OS and determination of the optimal follow-up duration of OS to aid its utility in future adjuvant trials are needed. METHODS: Individual patient data from 9 randomized studies conducted between 1998 and 2009 were included; 3 trials tested biologics. Trial-level surrogacy examining the correlation of treatment effect estimates of 3-year DFS with 5 to 6.5-year OS was evaluated using both linear regression (RWLS2) and Copula bivariate (RCopula2) models and reported with 95% confidence intervals (CIs). For R2, a value closer to 1 indicates a stronger correlation. RESULTS: Data from a total of 18 396 patients were analyzed (median age = 59 years; 54.0% male), with 54.1% having low-risk tumors (T1-3 and N1), 31.6% KRAS mutated, 12.3% BRAF mutated, and 12.4% microsatellite instability high or deficient mismatch repair tumors. Trial-level correlation between 3-year DFS and 5-year OS remained strong (RWLS2 = 0.82, 95% CI = 0.67 to 0.98; RCopula2 = 0.92, 95% CI = 0.83 to 1.00) and increased as the median follow-up of OS extended. Analyses limited to trials that tested biologics showed consistent results. CONCLUSIONS: Three-year DFS remains a validated surrogate endpoint for 5-year OS in adjuvant CC trials. The correlation was likely strengthened with 6 years of follow-up for OS.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Colonic Neoplasms , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chemotherapy, Adjuvant , Colonic Neoplasms/drug therapy , DNA Mismatch Repair , Disease-Free Survival , Female , Fluorouracil/therapeutic use , Humans , Male , Middle Aged , Neoplasm Staging , Randomized Controlled Trials as Topic
20.
Nature ; 598(7879): 120-128, 2021 10.
Article in English | MEDLINE | ID: mdl-34616061

ABSTRACT

Mammalian brain cells show remarkable diversity in gene expression, anatomy and function, yet the regulatory DNA landscape underlying this extensive heterogeneity is poorly understood. Here we carry out a comprehensive assessment of the epigenomes of mouse brain cell types by applying single-nucleus DNA methylation sequencing1,2 to profile 103,982 nuclei (including 95,815 neurons and 8,167 non-neuronal cells) from 45 regions of the mouse cortex, hippocampus, striatum, pallidum and olfactory areas. We identified 161 cell clusters with distinct spatial locations and projection targets. We constructed taxonomies of these epigenetic types, annotated with signature genes, regulatory elements and transcription factors. These features indicate the potential regulatory landscape supporting the assignment of putative cell types and reveal repetitive usage of regulators in excitatory and inhibitory cells for determining subtypes. The DNA methylation landscape of excitatory neurons in the cortex and hippocampus varied continuously along spatial gradients. Using this deep dataset, we constructed an artificial neural network model that precisely predicts single neuron cell-type identity and brain area spatial location. Integration of high-resolution DNA methylomes with single-nucleus chromatin accessibility data3 enabled prediction of high-confidence enhancer-gene interactions for all identified cell types, which were subsequently validated by cell-type-specific chromatin conformation capture experiments4. By combining multi-omic datasets (DNA methylation, chromatin contacts, and open chromatin) from single nuclei and annotating the regulatory genome of hundreds of cell types in the mouse brain, our DNA methylation atlas establishes the epigenetic basis for neuronal diversity and spatial organization throughout the mouse cerebrum.


Subject(s)
Brain/cytology , DNA Methylation , Epigenome , Epigenomics , Neurons/classification , Neurons/metabolism , Single-Cell Analysis , Animals , Atlases as Topic , Brain/metabolism , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Cytosine/chemistry , Cytosine/metabolism , Datasets as Topic , Dentate Gyrus/cytology , Enhancer Elements, Genetic/genetics , Gene Expression Profiling , Hippocampus/cytology , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Biological , Neural Pathways , Neurons/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...