Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 7(48): 26585-94, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26600393

ABSTRACT

Electrochemical quartz crystal microbalance coupled with dissipation (EQCM-D) is employed to investigate the solid electrolyte interphase (SEI) formation and Li insertion/deinsertion into thin film electrodes of tin. Based on the frequency change we find that the initial SEI formation process is rapid before Li insertion but varies significantly with increasing concentration of the additive fluoroethylene carbonate (FEC) in the electrolyte. The extent of dissipation, which represents the film rigidity, increases with cycle number, reflecting film thickening and softening. Dissipation values are almost twice as large in the baseline electrolyte (1.2 M LiPF6 in 3:7 wt % ethylene carbonate:ethyl methyl carbonate), indicating the film in baseline electrolyte is roughly twice as soft as in the FEC-containing cells. More importantly, we detail how quantitative data about mass, thickness, shear elastic modulus, and shear viscosity in a time-resolved manner can be obtained from the EQCM-D response. These parameters were extracted from the frequency and dissipation results at multiple harmonics using the Sauerbrey and Voigt viscoelastic models. From these modeled results we show the dynamic mass changes for each half cycle. We also demonstrate that different amounts of FEC additive influence the SEI formation behavior and result in differences in the estimated mass, shear modulus and viscosity. After three cycles, the film in baseline electrolyte exhibits a 1.2 times larger mass change compared with the film in the FEC-containing electrolyte. The shear elastic modulus of films formed in the presence of FEC is larger than in the baseline electrolyte at early stages of lithiation. Also with lithiation is a marked increase in film viscosity, which together point to a much stiffer and more homogeneous SEI formed in the presence of FEC.

2.
ACS Appl Mater Interfaces ; 6(12): 9093-9, 2014 Jun 25.
Article in English | MEDLINE | ID: mdl-24848580

ABSTRACT

Understanding the kinetics of dye adsorption and desorption on semiconductors is crucial for optimizing the performance of dye-sensitized solar cells (DSSCs). Quartz crystal microbalance with dissipation monitoring (QCM-D) measures adsorbed mass in real time, allowing determination of binding kinetics. In this work, we characterize adsorption of the common RuBipy dye N3 to the native oxide layer of a planar, sputter-coated titanium surface, simulating the TiO2 substrate of a DSSC. We report adsorption equilibrium constants consistent with prior optical measurements of N3 adsorption. Dye binding and surface integrity were also verified by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy (XPS). We further study desorption of the dye from the native oxide layer on the QCM sensors using tetrabutylammonium hydroxide (TBAOH), a commonly used industrial desorbant. We find that using TBAOH as a desorbant does not fully regenerate the surface, though little ruthenium or nitrogen is observed by XPS after desorption, suggesting that carboxyl moieties of N3 remain bound. We demonstrate the native oxide layer of a titanium sensor as a valid and readily available planar TiO2 morphology to study dye adsorption and desorption and begin to investigate the mechanism of dye desorption in DSSCs, a system that requires further study.

3.
Anal Chem ; 80(20): 7840-5, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18803394

ABSTRACT

We report the application of a quartz crystal microbalance with dissipation monitoring (QCM-D) to rheology of mixed-phase micellar systems. This novel application of QCM-D allows for the facile monitoring of complex systems under a variety of conditions. Viscosity measurements were obtained for sodium dodecyl sulfate (SDS) solutions, ranging from 1.0 to 50.0 mg/mL, in the presence and absence of toluene. Toluene was shown to swell SDS micelles as observed through an increase in viscosity, and an inflection point designating the critical micelle concentration (CMC) was clearly visible. Aqueous SDS solutions were also stabilized with sodium chloride (NaCl), up to 1.2 M, and with n-dodecanol in toluene solutions, up to 5.0 vol %. Rodlike micelle formation and swelling with toluene were observed in both cases, supporting previous studies. These studies show that a QCM-D approach to ultrasonic rheology holds potential for the specific study of multiphase systems, non-Newtonian fluids, and low volumes of analyte, aspects highly useful for complex or expensive colloidal dispersions such as micellar or biomolecular solutions.

4.
J Biomol Tech ; 19(3): 151-8, 2008 Jul.
Article in English | MEDLINE | ID: mdl-19137101

ABSTRACT

In recent years, there has been a rapid growth in the number of scientific reports in which the quartz crystal microbalance (QCM) technique has played a key role in elucidating various aspects of biological materials and their interactions. This article illustrates some key advances in the development of a special variation of this technique called quartz crystal microbalance with dissipation monitoring (QCM-D). The main feature and advantage of QCM-D, compared with the conventional QCM, is that it in addition to measuring changes in resonant frequency (Deltaf), a simultaneous parameter related to the energy loss or dissipation (DeltaD) of the system is also measured. Deltaf essentially measures changes in the mass attached to the sensor surface, while DeltaD measures properties related to the viscoelastic properties of the adlayer. Thus, QCM-D measures two totally independent properties of the adlayer. The focus of this review is an overview of the QCM-D technology and highlights of recent applications. Specifically, recent applications dealing with DNA, proteins, lipids, and cells will be detailed. This is not intended as a comprehensive review of all possible applications of the QCM-D technology, but rather a glimpse into a few highlighted application areas in the biomolecular field that were published in 2007.


Subject(s)
Biosensing Techniques/methods , Biosensing Techniques/statistics & numerical data , Biotechnology , Cells/chemistry , Crystallization , DNA/analysis , Lipids/analysis , Models, Theoretical , Nanotechnology , Proteins/analysis , Quartz
5.
Langmuir ; 23(5): 2414-22, 2007 Feb 27.
Article in English | MEDLINE | ID: mdl-17249701

ABSTRACT

Thin nanoporous gold (np-Au) films, ranging in thickness from approximately 40 to 1600 nm, have been prepared by selective chemical etching of Ag from Ag/Au alloy films supported on planar substrates. A combination of scanning electron microscopy (SEM) imaging, synchrotron grazing incidence small angle X-ray scattering, and N2 adsorption surface area measurements shows the films to exhibit a porous structure with intertwined gold fibrils exhibiting a spectrum of feature sizes and spacings ranging from several to hundreds of nanometers. Spectroscopic ellipsometry measurements (300-800 nm) reveal the onset of surface plasmon types of features with increase of film thicknesses into the approximately 200 nm film thickness range. Raman scattering measurements for films functionalized with a self-assembled monolayer formed from 4-fluorobenzenethiol show significant enhancements which vary sharply with film thickness and etching times. The maximum enhancement factors reach approximately 10(4) for 632.8 nm excitation, peak sharply in the approximately 200 nm thickness range for films prepared at optimum etching times, and show high spot to spot reproducibility with approximately 1 microm laser spot sizes, an indication that these films could be useful as durable, highly reproducible surface-enhanced Raman substrates.

SELECTION OF CITATIONS
SEARCH DETAIL
...