Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(21): 31331-31342, 2024 May.
Article in English | MEDLINE | ID: mdl-38630399

ABSTRACT

Fatty acids and essential oils (EOs) are the primary variables that influence the quality of fennel (Foeniculum vulgare Mill.). Soil toxicity to cadmium (Cd) is the main environmental issue facing fennel, and priming methods like soil amendments and nanoparticles (NPs) are commonly utilized to deal with it. The goal of the current study was to examine the effects of biochar (BC) and selenium nanoparticles (Se NPs) on fennel plants in Cd-contaminated soils. The pot experiment was conducted with Cd stress at 0, 10, and 20 mg kg-1 soil, BC at 5% (v/v), and foliar-spraying Se NPs at 40 mg L-1 as a factorial completely randomized design (CRD) at a greenhouse condition in 2022. The findings demonstrated that Cd toxicity significantly decreased plant performance, while BC and Se NPs enhanced it. Without BC and Se NPs, Cd toxicity at 20 mg kg-1 soil decreased biological yield (39%), seed yield (37%), EO yield (32%), and monounsaturated fatty acids (14%), while increased saturated fatty acid (26%) and polyunsaturated fatty acids (40%) of fennel. The main EO profile was anethole (65.32-73.25%), followed by limonene (16.12-22.07%), fenchone (5.57-6.83%), and estragole (2.25-3.65%), which mainly were oxygenated monoterpenes. The combined application of BC and Se NPs improved the yield, EO production, and fatty acid profile of fennel plants under Cd stress, increasing the plants' resistance to Cd toxicity.


Subject(s)
Cadmium , Charcoal , Fatty Acids , Foeniculum , Nanoparticles , Oils, Volatile , Selenium , Foeniculum/chemistry , Oils, Volatile/chemistry , Charcoal/chemistry , Selenium/chemistry , Cadmium/toxicity , Nanoparticles/toxicity , Soil Pollutants/toxicity , Soil/chemistry
2.
Environ Sci Pollut Res Int ; 26(21): 21579-21588, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31127512

ABSTRACT

Polycaprolactone nanocapsules (PCL) containing pretilachlor were prepared, and Fourier transform infrared spectroscopy, atomic force microscopy, and transmission electron microscopy were used for their structural and morphological investigations. The results revealed that the nanocapsules had irregular shape and their particles size was in the range of 70-200 nm. The encapsulation efficiency of pretilachlor was measured as 99.5 ± 1.3% using high-performance liquid chromatography analysis. The physicochemical stability studies over 60 days showed that the nanocapsules were stable in the suspension without any aggregation. The herbicide activity was examined in a pre-emergence manner using barnyard grass as a target plant and rice as a non-target plant. The nanoformulation had no negative effect on rice plant. However, its effect on barnyard grass was significant. The cytotoxicity analysis indicated that the nanocapsulated herbicide is less toxic rather than the commercial formulation. Therefore, encapsulation of pretilachlor in PCL nanocapsules can be used effectively to construct environmentally friendly PCL-herbicide systems in agriculture.


Subject(s)
Acetanilides/chemistry , Herbicides/chemistry , Nanocapsules , Polyesters/chemistry , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Particle Size , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...