Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200216, 2024 May.
Article in English | MEDLINE | ID: mdl-38484217

ABSTRACT

BACKGROUND AND OBJECTIVES: Autoantibody discovery in complex autoimmune diseases is challenging. Diverse successful antigen identification strategies are available, but, so far, have often been unsuccessful, especially in the discovery of protein antigens in which conformational and post-translational modification are critical. Our study assesses the utility of a human membrane and secreted protein microarray technology to detect autoantibodies in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). METHODS: A cell microarray consisting of human embryonic kidney-293 cells expressing >5,000 human proteins was used. First, a validation step was performed with 4 serum samples from patients with autoimmune nodopathy (AN) to assess the ability of this technology to detect circulating known autoantibodies. The ability of the cell microarray technology to discover novel IgG autoantibodies was assessed incubating the array with 8 CIDP serum samples. Identified autoantibodies were subsequently validated using cell-based assays (CBAs), ELISA, and/or tissue immunohistochemistry and analyzed in a cohort of CIDP and AN (n = 96) and control (n = 100) samples. RESULTS: Serum anti-contactin-1 and anti-neurofascin-155 were detected by the human cell microarray technology. Nine potentially relevant antigens were found in patients with CIDP without other detectable antibodies; confirmation was possible in six of them: ephrin type-A receptor 7 (EPHA7); potassium-transporting ATPase alpha chain 1 and subunit beta (ATP4A/4B); leukemia-inhibitory factor (LIF); and interferon lambda 1, 2, and 3 (IFNL1, IFNL2, IFNL3). Anti-ATP4A/4B and anti-EPHA7 antibodies were detected in patients and controls and considered unrelated to CIDP. Both anti-LIF and anti-IFNL antibodies were found in the same 2 patients and were not detected in any control. Both patients showed the same staining pattern against myelinating fibers of peripheral nerve tissue and of myelinating neuron-Schwann cell cocultures. Clinically relevant correlations could not be established for anti-LIF and anti-IFNL3 antibodies. DISCUSSION: Our work demonstrates the utility of human cell microarray technology to detect known and discover unknown autoantibodies in human serum samples. Despite potential CIDP-associated autoantibodies (anti-LIF and anti-IFNL3) being identified, their clinical and pathogenic relevance needs to be elucidated in bigger cohorts.


Subject(s)
Autoimmune Diseases , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating , Humans , Autoantibodies , Proteome , Neurons/chemistry
2.
Clin Cancer Res ; 26(7): 1725-1735, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31732522

ABSTRACT

PURPOSE: Immune components of the tumor microenvironment (TME) have been associated with disease outcome. We prospectively evaluated the association of an immune-related gene signature (GS) with clinical outcome in melanoma and non-small cell lung cancer (NSCLC) tumor samples from two phase III studies. EXPERIMENTAL DESIGN: The GS was prospectively validated using an adaptive signature design to optimize it for the sample type and technology used in phase III studies. One-third of the samples were used as "training set"; the remaining two thirds, constituting the "test set," were used for the prospective validation of the GS. RESULTS: In the melanoma training set, the expression level of eight Th1/IFNγ-related genes in tumor-positive lymph node tissue predicted the duration of disease-free survival (DFS) and overall survival (OS) in the placebo arm. This GS was prospectively and independently validated as prognostic in the test set. Building a multivariate Cox model in the test set placebo patients from clinical covariates and the GS score, an increased number of melanoma-involved lymph nodes and the GS were associated with DFS and OS. This GS was not associated with DFS in NSCLC, although expression of the Th1/IFNγ-related genes was associated with the presence of lymphocytes in tumor samples in both indications. CONCLUSIONS: These findings provide evidence that expression of Th1/IFNγ genes in the TME, as measured by this GS, is associated with clinical outcome in melanoma. This suggests that, using this GS, patients with stage IIIB/C melanoma can be classified into different risk groups.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Gene Expression Regulation, Neoplastic , Interferon-gamma/immunology , Melanoma/pathology , Th1 Cells/immunology , Tumor Microenvironment/immunology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Humans , Interferon-gamma/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Melanoma/drug therapy , Melanoma/genetics , Prognosis , Prospective Studies , Survival Rate , Th1 Cells/metabolism , Transcriptome
3.
Lancet Oncol ; 19(7): 916-929, 2018 07.
Article in English | MEDLINE | ID: mdl-29908991

ABSTRACT

BACKGROUND: Despite newly approved treatments, metastatic melanoma remains a life-threatening condition. We aimed to evaluate the efficacy of the MAGE-A3 immunotherapeutic in patients with stage IIIB or IIIC melanoma in the adjuvant setting. METHODS: DERMA was a phase 3, double-blind, randomised, placebo-controlled trial done in 31 countries and 263 centres. Eligible patients were 18 years or older and had histologically proven, completely resected, stage IIIB or IIIC, MAGE-A3-positive cutaneous melanoma with macroscopic lymph node involvement and an Eastern Cooperative Oncology Group performance score of 0 or 1. Randomisation and treatment allocation at the investigator sites were done centrally via the internet. We randomly assigned patients (2:1) to receive up to 13 intramuscular injections of recombinant MAGE-A3 with AS15 immunostimulant (MAGE-A3 immunotherapeutic; 300 µg MAGE-A3 antigen plus 420 µg CpG 7909 reconstituted in AS01B to a total volume of 0·5 mL), or placebo, over a 27-month period: five doses at 3-weekly intervals, followed by eight doses at 12-weekly intervals. The co-primary outcomes were disease-free survival in the overall population and in patients with a potentially predictive gene signature (GS-positive) identified previously and validated here via an adaptive signature design. The final analyses included all patients who had received at least one dose of study treatment; analyses for efficacy were in the as-randomised population and for safety were in the as-treated population. This trial is registered with ClinicalTrials.gov, number NCT00796445. FINDINGS: Between Dec 1, 2008, and Sept 19, 2011, 3914 patients were screened, 1391 randomly assigned, and 1345 started treatment (n=895 for MAGE-A3 and n=450 for placebo). At final analysis (data cutoff May 23, 2013), median follow-up was 28·0 months [IQR 23·3-35·5] in the MAGE-A3 group and 28·1 months [23·7-36·9] in the placebo group. Median disease-free survival was 11·0 months (95% CI 10·0-11·9) in the MAGE-A3 group and 11·2 months (8·6-14·1) in the placebo group (hazard ratio [HR] 1·01, 0·88-1·17, p=0·86). In the GS-positive population, median disease-free survival was 9·9 months (95% CI 5·7-17·6) in the MAGE-A3 group and 11·6 months (5·6-22·3) in the placebo group (HR 1·11, 0·83-1·49, p=0·48). Within the first 31 days of treatment, adverse events of grade 3 or worse were reported by 126 (14%) of 894 patients in the MAGE-A3 group and 56 (12%) of 450 patients in the placebo group, treatment-related adverse events of grade 3 or worse by 36 (4%) patients given MAGE-A3 vs six (1%) patients given placebo, and at least one serious adverse event by 14% of patients in both groups (129 patients given MAGE-A3 and 64 patients given placebo). The most common adverse events of grade 3 or worse were neoplasms (33 [4%] patients in the MAGE-A3 group vs 17 [4%] patients in the placebo group), general disorders and administration site conditions (25 [3%] for MAGE-A3 vs four [<1%] for placebo) and infections and infestations (17 [2%] for MAGE-A3 vs seven [2%] for placebo). No deaths were related to treatment. INTERPRETATION: An antigen-specific immunotherapeutic alone was not efficacious in this clinical setting. Based on these findings, development of the MAGE-A3 immunotherapeutic for use in melanoma has been stopped. FUNDING: GlaxoSmithKline Biologicals SA.


Subject(s)
Antigens, Neoplasm/drug effects , Immunoconjugates/therapeutic use , Immunotherapy/methods , Melanoma/drug therapy , Neoplasm Proteins/drug effects , Skin Neoplasms/drug therapy , Adult , Aged , Antigens, Neoplasm/genetics , Chemotherapy, Adjuvant , Disease-Free Survival , Double-Blind Method , Female , Humans , Injections, Intramuscular , Internationality , Male , Melanoma/mortality , Melanoma/pathology , Melanoma/surgery , Middle Aged , Neoplasm Invasiveness/pathology , Neoplasm Proteins/genetics , Neoplasm Staging , Prognosis , Risk Assessment , Skin Neoplasms/mortality , Skin Neoplasms/pathology , Skin Neoplasms/surgery , Survival Analysis , Treatment Outcome , Melanoma, Cutaneous Malignant
4.
Biom J ; 59(4): 672-684, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27763683

ABSTRACT

In this paper, we considered different methods to test the interaction between treatment and a potentially large number (p) of covariates in randomized clinical trials. The simplest approach was to fit univariate (marginal) models and to combine the univariate statistics or p-values (e.g., minimum p-value). Another possibility was to reduce the dimension of the covariates using the principal components (PCs) and to test the interaction between treatment and PCs. Finally, we considered the Goeman global test applied to the high-dimensional interaction matrix, adjusted for the main (treatment and covariates) effects. These tests can be used for personalized medicine to test if a large set of biomarkers can be useful to identify a subset of patients who may be more responsive to treatment. We evaluated the performance of these methods on simulated data and we applied them on data from two early phases oncology clinical trials.


Subject(s)
Models, Statistical , Precision Medicine/methods , Randomized Controlled Trials as Topic , Biomarkers/analysis , Computer Simulation , Humans
5.
Biometrics ; 72(3): 877-87, 2016 09.
Article in English | MEDLINE | ID: mdl-26689167

ABSTRACT

To evaluate a new therapy versus a control via a randomized, comparative clinical study or a series of trials, due to heterogeneity of the study patient population, a pre-specified, predictive enrichment procedure may be implemented to identify an "enrichable" subpopulation. For patients in this subpopulation, the therapy is expected to have a desirable overall risk-benefit profile. To develop and validate such a "therapy-diagnostic co-development" strategy, a three-step procedure may be conducted with three independent data sets from a series of similar studies or a single trial. At the first stage, we create various candidate scoring systems based on the baseline information of the patients via, for example, parametric models using the first data set. Each individual score reflects an anticipated average treatment difference for future patients who share similar baseline profiles. A large score indicates that these patients tend to benefit from the new therapy. At the second step, a potentially promising, enrichable subgroup is identified using the totality of evidence from these scoring systems. At the final stage, we validate such a selection via two-sample inference procedures for assessing the treatment effectiveness statistically and clinically with the third data set, the so-called holdout sample. When the study size is not large, one may combine the first two steps using a "cross-training-evaluation" process. Comprehensive numerical studies are conducted to investigate the operational characteristics of the proposed method. The entire enrichment procedure is illustrated with the data from a cardiovascular trial to evaluate a beta-blocker versus a placebo for treating chronic heart failure patients.


Subject(s)
Patient Selection , Proportional Hazards Models , Risk Assessment/statistics & numerical data , Therapeutics/standards , Adrenergic beta-Antagonists/therapeutic use , Cardiovascular Diseases/drug therapy , Computer Simulation , Heart Failure/drug therapy , Humans , Outcome Assessment, Health Care , Randomized Controlled Trials as Topic , Sample Size , Survival Analysis , Treatment Outcome
6.
J Clin Oncol ; 31(19): 2388-95, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23715562

ABSTRACT

PURPOSE: To detect a pretreatment gene expression signature (GS) predictive of response to MAGE-A3 immunotherapeutic in patients with metastatic melanoma and to investigate its applicability in a different cancer setting (adjuvant therapy of resected early-stage non-small-cell lung cancer [NSCLC]). PATIENTS AND METHODS: Patients were participants in two phase II studies of the recombinant MAGE-A3 antigen combined with an immunostimulant (AS15 or AS02B). mRNA from melanoma biopsies was analyzed by microarray analysis and quantitative polymerase chain reaction. These results were used to identify and cross-validate the GS, which was then applied to the NSCLC data. RESULTS: In the patients with melanoma, 84 genes were identified whose expression was potentially associated with clinical benefit. This effect was strongest when the immunostimulant AS15 was included in the immunotherapy (hazard ratio [HR] for overall survival, 0.37; 95% CI, 0.13 to 1.05; P = .06) and was less strong with the other immunostimulant AS02B (HR, 0.84; 95% CI, 0.36 to 1.97; P = .70). The same GS was then used to predict the outcome for patients with resected NSCLC treated with MAGE-A3 plus AS02B; actively treated GS-positive patients showed a favorable disease-free interval compared with placebo-treated GS-positive patients (HR, 0.42; 95% CI, 0.17 to 1.03; P = .06), whereas among GS-negative patients, no such difference was found (HR, 1.17; 95% CI, 0.59 to 2.31; P = .65). The genes identified were mainly immune related, involving interferon gamma pathways and specific chemokines, suggesting that their pretreatment expression influences the tumor's immune microenvironment and the patient's clinical response. CONCLUSION: An 84-gene GS associated with clinical response for MAGE-A3 immunotherapeutic was identified in metastatic melanoma and confirmed in resected NSCLC.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Antigens, Neoplasm/immunology , Biomarkers, Tumor/immunology , Cancer Vaccines/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Immunotherapy/methods , Lung Neoplasms/drug therapy , Melanoma/drug therapy , Neoplasm Proteins/immunology , Skin Neoplasms/drug therapy , Transcriptome , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Male , Melanoma/genetics , Melanoma/immunology , Middle Aged , Molecular Targeted Therapy/methods , Odds Ratio , Predictive Value of Tests , Protein Array Analysis , Recombinant Proteins/therapeutic use , Reverse Transcriptase Polymerase Chain Reaction , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...