Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Malar J ; 23(1): 119, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664703

ABSTRACT

BACKGROUND: The residual activity of a clothianidin + deltamethrin mixture and clothianidin alone in IRS covered more than the period of malaria transmission in northern Benin. The aim of this study was to show whether the prolonged residual efficacy of clothianidin-based products resulted in a greater reduction in vector populations and subsequent malaria transmission compared with the shorter residual efficacy of pirimiphos-methyl. METHODS: Human bait mosquito collections by local volunteers and pyrethrum spray collections were used in 6 communes under IRS monitoring and evaluation from 2019 to 2021. ELISA/CSP and species PCR tests were performed on Anopheles gambiae sensu lato (s.l.) to determine the infectivity rate and subspecies by commune and year. The decrease in biting rate, entomological inoculation rate, incidence, inhibition of blood feeding, resting density of An. gambiae s.l. were studied and compared between insecticides per commune. RESULTS: The An. gambiae complex was the major vector throughout the study area, acounting for 98.71% (19,660/19,917) of all Anopheles mosquitoes collected. Anopheles gambiae s.l. collected was lower inside treated houses (45.19%: 4,630/10,245) than outside (54.73%: 5,607/10,245) after IRS (p < 0.001). A significant decrease (p < 0.001) in the biting rate was observed after IRS in all departments except Donga in 2021 after IRS with clothianidin 50 WG. The impact of insecticides on EIR reduction was most noticeable with pirimiphos-methyl 300 CS, followed by the clothianidin + deltamethrin mixture and finally clothianidin 50 WG. A reduction in new cases of malaria was observed in 2020, the year of mass distribution of LLINs and IRS, as well as individual and collective protection measures linked to COVID-19. Anopheles gambiae s.l. blood-feeding rates and parous were high and similar for all insecticides in treated houses. CONCLUSION: To achieve the goal of zero malaria, the optimal choice of vector control tools plays an important role. Compared with pirimiphos-methyl, clothianidin-based insecticides induced a lower reductions in entomological indicators of malaria transmission.


Subject(s)
Anopheles , Guanidines , Insecticides , Malaria , Mosquito Control , Mosquito Vectors , Neonicotinoids , Organothiophosphorus Compounds , Pyrethrins , Thiazoles , Animals , Anopheles/drug effects , Insecticides/pharmacology , Guanidines/pharmacology , Mosquito Vectors/drug effects , Neonicotinoids/pharmacology , Thiazoles/pharmacology , Mosquito Control/methods , Organothiophosphorus Compounds/pharmacology , Malaria/prevention & control , Malaria/transmission , Benin , Nitriles/pharmacology , Humans
2.
Trop Med Health ; 52(1): 18, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336760

ABSTRACT

The study objective was to assess the frequency of the kdr-L995F and ace-1 G280S genetic mutations in Anopheles gambiae s.l. mosquitoes and examine their ability to transmit Plasmodium falciparum in areas where indoor residual spraying (IRS) was implemented with Clothianidin 50 WG. The study was conducted in six communes in the Alibori and Donga departments of which four were IRS-treated and two were untreated and served as control. Post-IRS monthly samples of adult mosquitoes were collected in study communes using human landing catches (HLC). An. gambiae s.l. specimens were processed to detect kdr-L995F and ace-1 G280S mutations via PCR as well as Plasmodium falciparum infectivity through CSP ELISA. Our data revealed a high and similar allelic frequency for the kdr-L995F mutation in both treated and control communes (79% vs. 77%, p = 0.14) whilst allelic frequency of the ace-1 G280S mutation was lower across the study area (2-3%, p = 0.58). The sporozoite rate was 2.6% and 2.4% respectively in treated and untreated communes (p = 0.751). No association was found between Plasmodium falciparum infection in Anopheles gambiae s.l. vectors and carriage of kdr-L995F and ace-1 G280S mutations regardless of genotypes. The study findings underline the need for an integrated approach to malaria control, combining different control methods to effectively target transmission. Regular monitoring of insecticide resistance and genetic mutations is essential to guide control strategies.

3.
Parasit Vectors ; 17(1): 7, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178161

ABSTRACT

BACKGROUND: Long-lasting insecticidal nets (LLINs) may have different impacts on distinct mosquito vector species. We assessed the efficacy of pyrethroid-pyriproxyfen and pyrethroid-chlorfenapyr LLINs on the density of Anopheles gambiae s.s. and An. coluzzii compared to pyrethroid-only nets in a three-arm cluster randomised control trial in Benin. METHODS: Indoor and outdoor collections of adult mosquitoes took place in 60 clusters using human landing catches at baseline and every 3 months for 2 years. After morphological identification, around 15% of randomly selected samples of An. gambiae s.l. were dissected to determine parity, species (using PCR). RESULTS: Overall, a total of 46,613 mosquito specimens were collected at baseline and 259,250 in the eight quarterly collections post-net distribution. Post-net distribution, approximately 70% of the specimens of An. gambiae s.l. speciated were An. coluzzii, while the rest were mostly composed of An. gambiae s.s. with a small proportion (< 1%) of hybrids (An. gambiae/coluzzii). There was no evidence of a significant reduction in vector density indoors in either primary vector species [An. coluzzii: DR (density ratio) = 0.62 (95% CI 0.21-1.77), p = 0.3683 for the pyrethroid-pyriproxyfen LLIN and DR = 0.56 (95% CI 0.19-1.62), p = 0.2866 for the pyrethroid-chlorfenapyr LLIN, An. gambiae s.s.: DR = 0.52 (95% CI 0.18-1.46), p = 0.2192 for the pyrethroid-pyriproxyfen LLIN and DR = 0.53 (95% CI 0.19-1.46), p = 0.2222 for the pyrethroid-chlorfenapyr]. The same trend was observed outdoors. Parity rates of An. gambiae s.l. were also similar across study arms. CONCLUSIONS: Compared with pyrethroid-only LLINs, pyrethroid-chlorfenapyr LLINs and pyrethroid-pyriproxyfen LLINs performed similarly against the two primary mosquito species An. gambiae s.s. and An. coluzzii in Benin.


Subject(s)
Anopheles , Insecticide-Treated Bednets , Insecticides , Malaria , Pyrethrins , Animals , Humans , Benin , Insecticide Resistance , Insecticides/pharmacology , Malaria/prevention & control , Mosquito Control , Mosquito Vectors , Pyrethrins/pharmacology
4.
PLoS One ; 18(9): e0291755, 2023.
Article in English | MEDLINE | ID: mdl-37729177

ABSTRACT

BACKGROUND: Long-lasting insecticidal bed nets (LLINs) are a key measure for preventing malaria and their evaluation is coordinated by the World Health Organization Pesticide Evaluation Scheme (WHOPES). LifeNet® was granted WHOPES time-limited interim recommendation in 2011 after successful Phase I and Phase II evaluations. Here, we evaluated the durability and community acceptance of LifeNet® in a Phase III trial from June 2014 to June 2017 in Benin rural area. METHODS: A prospective longitudinal, cluster-randomized, controlled trial with households as the unit of observation was designed to assess the performance of LifeNet® over a three-year period, using a WHOPES fully recommended LLIN (PermaNet® 2.0) as a positive control. The primary outcomes were the bioassay performance using WHO cone assays and tunnel tests, the insecticide content and physical integrity. RESULTS: At baseline, 100% of LLINs were within the tolerance limits of their target deltamethrin concentrations. By 36 months only 17.3% of LifeNet® and 8.5% of PermaNet® LLINs still were within their target deltamethrin concentrations. Despite these low rates, 100% of both LLINs meet WHO efficacy criteria (≥ 80% mortality or ≥ 95% knockdown or tunnel test criteria of ≥ 80% mortality or ≥ 90% blood-feeding inhibition) after 36 months using WHO cone bio-assays and tunnel tests. The proportion of LLINs in good physical condition was 33% for LifeNet® and 29% for PermaNet® after 36 months. After 36 M the survivorship was 21% and 26% for LifeNet® and PermaNet® respectively. Although both LLINs were well accepted by the population, complaints of side effects were significantly higher among LifeNet® users than PermaNet® ones. CONCLUSION: LifeNet® LLINs did meet WHO criteria for bio-efficacy throughout the study period and were well accepted by the population. This is an important step towards getting a full WHO recommendation for use in malaria endemic countries.


Subject(s)
Insecticides , Pesticides , Pyrethrins , Polypropylenes , Benin , Prospective Studies , Insecticides/pharmacology , Pyrethrins/pharmacology
5.
Sci Rep ; 13(1): 12263, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37507478

ABSTRACT

Selection of mosquito collection methods is of crucial importance to evaluate the impact of vector control tools on entomological outcomes. During a cluster randomised control trial evaluating the relative efficacy of two dual-active ingredient (a.i.) long-lasting insecticidal nets (LLINs) compared to pyrethroid-only LLINs, we assessed the performance of different mosquito collection methods: Human landing catches (HLC), Centers for Disease Control and Prevention (CDC) light traps, and pyrethrum spray catches (PSC). Anopheles mosquitoes were collected using three collection methods in 4 houses, in each of the 60 trial clusters at baseline and every quarter for 24 months using PSCs and HLCs, while CDC light traps were performed during two quarters only. Mean density of vectors collected per method per night was the highest with HLCs (15.9), followed by CDC light traps (6.8); with PSCs (1.1) collecting 10 times less mosquitoes than HLCs. All three collection methods collected fewer mosquitoes in the Interceptor G2® dual a.i. arm, compared to the other trial arms, although only HLCs and PSCs demonstrated strong evidence of this due to a greater number of collection rounds undertaken, than CDC light traps. The broadly similar results regarding the differential impact of the two dual a.i. LLINs showed by the three collection methods suggest that the more ethically acceptable, cheaper, and logistically simpler methods such as CDC light traps could be prioritised for use in large community trials for measuring the efficacy of vector control tools.


Subject(s)
Anopheles , Insecticides , Pyrethrins , United States , Animals , Humans , Insecticides/pharmacology , Mosquito Control/methods , Mosquito Vectors , Pyrethrins/pharmacology
6.
Malar J ; 22(1): 150, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37158866

ABSTRACT

BACKGROUND: In Alibori and Donga, two departments of high malaria incidence of Northern Benin, pirimiphos-methyl, mixture deltamethrin + clothianidin, as well as clothianidin were used at large scale for IRS. The present study aimed to assess the residual efficacy of these products. METHODS: Immatures of Anopheles gambiae sensu lato (s.l.) collected in the communes of Kandi and Gogounou (Department of Alibori), Djougou and Copargo (Department of Donga) were reared until adulthood. Females aged 2-5 days were used for susceptibility tube tests following the WHO protocol. The tests were conducted with deltamethrin (0.05%), bendiocarb (0.1%), pirimiphos-methyl (0.25%) and clothianidin (2% weight per volume). For cone tests performed on cement and mud walls, the An. gambiae Kisumu susceptible strain was used. After the quality control of the IRS performed 1-week post-campaign, the evaluation of the residual activity of the different tested insecticides/mixture of insecticides was conducted on a monthly basis. RESULTS: Over the three study years, deltamethrin resistance was observed in all the communes. With bendiocarb, resistance or possible resistance was observed. In 2019 and 2020, full susceptibility to pirimiphos-methyl was observed, while possible resistance to the same product was detected in 2021 in Djougou, Gogounou and Kandi. With clothianidin, full susceptibility was observed 4-6 days post-exposure. The residual activity lasted 4-5 months for pirimiphos-methyl, and 8-10 months for clothianidin and the mixture deltamethrin + clothianidin. A slightly better efficacy of the different tested products was observed on cement walls compared to the mud walls. CONCLUSION: Overall, An. gambiae s.l. was fully susceptible to clothianidin, while resistance/possible resistance was observed the other tested insecticides. In addition, clothianidin-based insecticides showed a better residual activity compared to pirimiphos-methyl, showing thus their ability to provide an improved and prolonged control of pyrethroid resistant vectors.


Subject(s)
Insecticides , Female , Animals , Benin , Insecticides/pharmacology , Mosquito Vectors , Africa, Western
7.
Malar J ; 22(1): 24, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36670482

ABSTRACT

BACKGROUND: The objective of this study was to estimate malaria transmission and insecticide resistance status in malaria vectors in Adjrako village from Zè District in Southern Benin. The present study was carried out prior to investigations on infectivity of blood from asymptomatic carriers of Plasmodium falciparum to malaria vector mosquitoes. METHODS: Human landing collections (HLCs) were performed in Adjrako village during the rainy season (September-November 2021). In this village, host-seeking mosquitoes were collected during three nights per survey from 22:00 to 06:00 in six randomly selected houses. Malaria vectors were dissected in orders to determinate their parity. Plasmodium falciparum infection in malaria vectors was determined by qPCR and the entomological inoculation rate (EIR) was calculated. The World Health Organization (WHO) insecticide susceptibility test-kits were used to evaluate the susceptibility of Anopheles gambiae sensu lato (s.l.) to deltamethrin at 0.05% and bendiocarb at 0.1%. RESULTS: A total of 3260 females of mosquitoes belonging to 4 genera (Anopheles, Culex, Aedes and Mansonia) were collected. Most of the mosquitoes collected were An. gambiae sensu lato (s.l.). The entomological inoculation rate (EIR) for the three collection months was 8.7 infective bites per person and the parity rate was 84%. Mortality rates of An. gambiae s.l. exposed to 0.05% deltamethrin and 0.1% bendiocarb were 18% and 96%, respectively, indicating that this vector population was resistant to deltamethrin and possibly resistant to bendiocarb in the study area. CONCLUSION: This study showed that malaria transmission is effective in the study area and that An. gambiae s.l. is the main malaria vector. The entomological parameters indicate this study area is potentially favourable for investigations on P. falciparum asymptomatic carriers.


Subject(s)
Anopheles , Malaria, Falciparum , Malaria , Animals , Female , Humans , Plasmodium falciparum/genetics , Benin/epidemiology , Mosquito Vectors , Malaria, Falciparum/epidemiology , Insecticide Resistance
8.
PLOS Glob Public Health ; 2(1): e0000095, 2022.
Article in English | MEDLINE | ID: mdl-36962132

ABSTRACT

Buruli ulcer is a neglected tropical disease caused by M. ulcerans, an environmental mycobacterium. This cutaneous infectious disease affects populations with poor access to sanitation, safe water and healthcare living in rural areas of West and Central Africa. Stagnant open bodies of surface water and slow-running streams are the only risk factor identified in Africa, and there is no human-to-human transmission. Appropriate and effective prevention strategies are required for populations living in endemic areas. Based on a multidisciplinary approach in an area in which Buruli ulcer is endemic in South Benin, we investigated the link between all human-environment interactions relating to unprotected water and behaviors associated with Buruli ulcer risk likely to affect incidence rates. We characterised the sources of water as well as water bodies and streams used by communities, by conducting a prospective case-control study directly coupled with geographic field observations, spatial analysis, and the detection of M. ulcerans in the environment. A full list of the free surface waters used for domestic activities was generated for a set of 34 villages, and several types of human behaviour associated with a higher risk of transmission were identified: (i) prolonged walking in water to reach cultivated fields, (ii) collecting water, (iii) and swimming. Combining the results of the different analyses identified the risk factor most strongly associated with Buruli ulcer was the frequency of contact with unprotected and natural water, particularly in regularly flooded or irrigated lowlands. We confirm that the use of clean water from drilled wells confers protection against Buruli ulcer. These specific and refined results provide a broader scope for the design of an appropriate preventive strategy including certain practices or infrastructures observed during our field investigations. This strategy could be improved by the addition of knowledge about irrigation practices and agricultural work in low-lying areas.

9.
BMC Res Notes ; 14(1): 200, 2021 May 22.
Article in English | MEDLINE | ID: mdl-34022919

ABSTRACT

OBJECTIVE: In the framework of EVALMOUS study aiming to assess the use and effectiveness of mosquito nets by pregnant women and other members of their household in a lagoon area in southern Benin, the behaviour of pregnant women relative to the time they go to bed using the net were recorded. Malaria vectors biting rhythm, Plasmodium falciparum infection and insecticide resistance genes in malaria vectors were also determined. RESULTS: Overall, 3848 females of Anopheles gambiae s. l were collected and 280 pregnant women responded to the survey. Almost all Anopheles gambiae s. l. tested were Anopheles coluzzi Coetzee and Wilkerson 2013 (Diptera: Culicidae). The CSP index in malaria vector was 1.85% and the allelic frequency of kdr gene was 74.4%. Around 90% of bites and Plasmodium falciparum Welch, 1897 (Haemosporida: Plasmodiidae) transmission occurred between 10 p.m. and 6 a.m., which coincides with the period when more than 80% of pregnant women were under bednet. Despite a slight early evening and early morning biting activity of malaria vectors in the study area, the good use of nets might remain a useful protection tool against mosquito biting and malaria transmission.


Subject(s)
Anopheles , Insecticides , Malaria , Animals , Anopheles/genetics , Benin , Feeding Behavior , Female , Humans , Malaria/prevention & control , Mosquito Vectors , Pregnancy , Pregnant Women
10.
Nat Commun ; 9(1): 4982, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30478327

ABSTRACT

Indoor residual spraying (IRS) is an important part of malaria control. There is a growing list of insecticide classes; pyrethroids remain the principal insecticide used in bednets but recently, novel non-pyrethroid IRS products, with contrasting impacts, have been introduced. There is an urgent need to better assess product efficacy to help decision makers choose effective and relevant tools for mosquito control. Here we use experimental hut trial data to characterise the entomological efficacy of widely-used, novel IRS insecticides. We quantify their impact against pyrethroid-resistant mosquitoes and use a Plasmodium falciparum transmission model to predict the public health impact of different IRS insecticides. We report that long-lasting IRS formulations substantially reduce malaria, though their benefit over cheaper, shorter-lived formulations depends on local factors including bednet use, seasonality, endemicity and pyrethroid resistance status of local mosquito populations. We provide a framework to help decision makers evaluate IRS product effectiveness.


Subject(s)
Insecticides/toxicity , Plasmodium falciparum/drug effects , Africa , Animals , Culicidae/drug effects , Insecticide-Treated Bednets , Malaria/parasitology , Public Health , Pyrethrins/toxicity , Randomized Controlled Trials as Topic , Time Factors
11.
Parasit Vectors ; 11(1): 508, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30208937

ABSTRACT

BACKGROUND: Pyrethroids are the most common class of insecticide used worldwide for indoor residual spraying (IRS) against malaria vectors. Water-dispersible granules (WG) are a pyrethroid formulation to be applied after disintegration and dispersion in water with less risks of inhalation than using the usual wettable powder (WP) formulation. The objective of this small-scale field study was to evaluate efficacy and duration of insecticidal action of a new alpha-cypermethrin WG (250 g a.i./kg) against susceptible Anopheles gambiae in comparison with the WHO reference product (alpha-cypermethrin WP, 50 g a.i./kg) on the most common indoor surfaces in Benin. METHODS: Both formulations were applied at two target-dose concentrations in houses made of mud and cement in the Tokoli village in southern Benin. We measured the applied dose of insecticide by chemical analysis of filter paper samples collected from the sprayed inner walls. We recorded An. gambiae mortality and knock-down rates every 15 days during 6 months using standard WHO bioassays. RESULTS: The alpha-cypermethrin WG formulation did not last as long as the WP formulation on both surfaces. The difference is higher with the 30 mg/m2 concentration for which the WP formulation reached the 80% mortality threshold during 2 months on the mud-plastered walls (3 months on cement) whereas the WG formulation last only one month (2 months on cement). CONCLUSIONS: The new WG formulation has a shorter efficacy than the WHO recommended WP formulation. In this trial, both the WG and WP formulations had low durations of efficacy that would need at least two rounds of spray to cover the entire transmission season.


Subject(s)
Anopheles/drug effects , Insecticides/pharmacology , Malaria/prevention & control , Mosquito Control/methods , Mosquito Vectors/drug effects , Pyrethrins/pharmacology , Animals , Anopheles/parasitology , Drug Compounding/veterinary , Female , Housing , Malaria/transmission , Mosquito Vectors/parasitology , Water
12.
BMC Public Health ; 18(1): 947, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30068334

ABSTRACT

BACKGROUND: Malaria vector control is mostly based on Long-Lasting Insecticidal Nets (LLIN). To date, all LLINs fully recommended by the World Health Organization Pesticide Scheme (WHOPES) are made of polyester or polyethylene. In this context, a new LLIN named LifeNet©, made of polypropylene fiber is developed. According to the manufacturer, LifeNet©is made of soft filament, has a greater mechanical strength, a superior insecticide wash resistance with a short insecticide regeneration time, a better flammability profile and a better environmental profile compared to polyester or polyethylene nets. METHODS: Through a WHOPES supervised trial, the efficacy of LifeNet© was evaluated in Benin in experimental huts against free-flying wild mosquitoes. RESULTS: LifeNet© has equal or better performances in terms of wash resistance, exophily, blood feeding inhibition and mortality compared to conventionally treated nets (CTN) treated with deltamethrin at 25 mg/m2 and washed to just before exhaustion. CONCLUSIONS: The efficacy of LifeNet© observed in this trial indicates that this net fulfill World Health Organization Pesticide Scheme (WHOPES) requirement for Long Lasting technology in Phase II. Throughout a Phase III trial currently ongoing in Southern Benin, the durability and the acceptability of this long-lasting insecticidal mosquito nets will be assessed under community conditions.


Subject(s)
Anopheles/drug effects , Insecticide-Treated Bednets , Insecticides/pharmacology , Mosquito Vectors/drug effects , Nitriles/pharmacology , Pyrethrins/pharmacology , Animals , Benin , Female , Humans , Insecticide Resistance/drug effects , Malaria/prevention & control , Mosquito Control/methods
13.
BMC Public Health ; 18(1): 683, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29859090

ABSTRACT

BACKGROUND: Malaria in pregnancy is prevalent in Sub-Saharan Africa. The first trimester of pregnancy is a critical period and the best preventive measure is Long Lasting Insecticidal Nets (LLIN). Unfortunately, few studies have been conducted which focuses on the usage and efficacy of LLIN on malaria prevention during the first trimester. METHODS: We assessed the use and effectiveness of LLIN in early pregnancy in Benin and its impact on malaria infection risk. We followed-up a cohort of 240 pregnant women from pre-conception to the end of the first trimester of pregnancy in Southern Benin. Parasitological, maternal and LLIN data were actively collected before, at the beginning and end of the first trimester of pregnancy. A Cox regression model was used to determine the relationship between the time to onset of the first malaria infection and the use, physical integrity, and bio-efficacy of the LLIN, adjusted for relevant covariables. RESULTS: The good use, good physical integrity and biological efficacy of LLIN were associated with a decreased risk of occurrence of the first malaria infection in early pregnancy (HRa = 0.38; (0.18-0.80); p < 0.001; HRa = 0.59; (0.29-1.19); p < 0.07; HRa = 0.97; (0.94-1.00); p < 0.04 respectively), after adjustment for other covariates. Primi/secundigravidity and malaria infection before pregnancy were associated with a risk of earlier onset of malaria infection. CONCLUSION: The classically used LLIN's indicators of possession and use may not be sufficient to characterize the true protection of pregnant women in the first trimester of pregnancy. Indicators of physical integrity and bio-efficacy should be integrated with those indicators in evaluation studies.


Subject(s)
Insecticide-Treated Bednets/statistics & numerical data , Insecticides/pharmacology , Malaria/prevention & control , Mosquito Control/methods , Pregnancy Complications, Infectious/prevention & control , Pregnancy Trimester, First , Adult , Benin/epidemiology , Cohort Studies , Female , Humans , Malaria/epidemiology , Ownership/statistics & numerical data , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Young Adult
14.
Malar J ; 15: 102, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26891758

ABSTRACT

BACKGROUND: In a context of large-scale implementation of malaria vector control tools, such as the distribution of long-lasting insecticide nets (LLIN), it is necessary to regularly assess whether strategies are progressing as expected and then evaluate their effectiveness. The present study used the case-control approach to evaluate the effectiveness of LLIN 42 months after national wide distribution. This study design offers an alternative to cohort study and randomized control trial as it permits to avoid many ethical issues inherent to them. METHODS: From April to August 2011, a case-control study was conducted in two health districts in Benin; Ouidah-Kpomasse-Tori (OKT) in the south and Djougou-Copargo-Ouake (DCO) in the north. Children aged 0-60 months randomly selected from community were included. Cases were children with a high axillary temperature (≥37.5 °C) or a reported history of fever during the last 48 h with a positive rapid diagnostic test (RDT). Controls were children with neither fever nor signs suggesting malaria with a negative RDT. The necessary sample size was at least 396 cases and 1188 controls from each site. The main exposure variable was "sleeping every night under an LLIN for the 2 weeks before the survey" (SL). The protective effectiveness (PE) of LLIN was calculated as PE = 1 - odds ratio. RESULTS: The declared SL range was low, with 17.0 and 27.5 % in cases and controls in the OKT area, and 44.9 and 56.5 % in cases and controls, in the DCO area, respectively. The declared SL conferred 40.5 % (95 % CI 22.2-54.5 %) and 55.5 % (95 % CI 28.2-72.4 %) protection against uncomplicated malaria in the OKT and the DCO areas, respectively. Significant differences in PE were observed according to the mother's education level. CONCLUSION: In the context of a mass distribution of LLIN, their use still conferred protection in up to 55 % against the occurrence of clinical malaria cases in children. Social factors, the poor use and the poor condition of an LLIN can be in disfavour with its effectiveness. In areas, where LLIN coverage is assumed to be universal or targeted at high-risk populations, case-control studies should be regularly conducted to monitor the effectiveness of LLIN. The findings will help National Malaria Control Programme and their partners to improve the quality of malaria control according to the particularity of each area or region as far as possible.


Subject(s)
Insecticide-Treated Bednets , Malaria/epidemiology , Malaria/prevention & control , Mosquito Control/statistics & numerical data , Adult , Benin/epidemiology , Case-Control Studies , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Young Adult
15.
Parasite ; 22: 28, 2015.
Article in English | MEDLINE | ID: mdl-26489480

ABSTRACT

Pyrethroid resistance in malaria vectors has spread across sub-Saharan Africa. Alternative tools and molecules are urgently needed for effective vector control. One of the most promising strategies to prevent or delay the development of resistance is to use at least two molecules having unrelated modes of action in combination in the same bed net. We evaluated in experimental huts in Côte d'Ivoire, a new polyethylene long-lasting insecticidal net (LN) product, Olyset® Duo, incorporating permethrin (PER) and pyriproxyfen (PPF), an insect growth regulator (IGR). PPF alone or in combination with permethrin had a significant impact on fertility (7-12% reduction relative to control) and no effect on fecundity of wild multi-resistant An. gambiae s.s. These results triggered crucial research questions on the behaviour of targeted mosquitoes around the LN. To maximize the sterilizing effect of PPF in the combination, there would be a need for a trade-off between the necessary contact time of the insect with PPF and the surface content of the pyrethroid insecticide that is bioavailable and induces excito-repellency.


Subject(s)
Anopheles/drug effects , Insect Vectors/drug effects , Insecticide-Treated Bednets , Malaria/prevention & control , Mosquito Control/instrumentation , Permethrin/pharmacology , Pyridines/pharmacology , Animals , Anopheles/genetics , Anopheles/physiology , Clutch Size/drug effects , Cote d'Ivoire , Drug Synergism , Equipment Failure , Feeding Behavior/drug effects , Female , Fertility/drug effects , Housing , Insect Proteins/genetics , Insect Vectors/physiology , Insecticide Resistance , Voltage-Gated Sodium Channels/genetics
16.
Parasite ; 22: 27, 2015.
Article in English | MEDLINE | ID: mdl-26489479

ABSTRACT

In the context of the widespread distribution of pyrethroid resistance among malaria vectors, we did a release-recapture trial in experimental huts to investigate the insecticidal and sterilizing effects of a novel long-lasting net (LN), Olyset® Duo, incorporating a mixture of permethrin (PER) and the insect growth regulator (IGR), pyri-proxyfen (PPF). An LN containing PPF alone and a classic Olyset® Net were tested in parallel as positive controls. The effect of progressive number of holes (6, 30, or 150) that may accrue in nets over time was simulated. We used two laboratory Anopheles gambiae s.s. strains: the susceptible Kisumu strain and the pyrethroid-resistant VK-Per strain having solely kdr as resistance mechanism. The effect of these nets on the reproductive success of blood-fed females that survived the different LNs conditions was recorded. Regardless of the mosquito strain, the LNs containing PPF alone with as many as 30 holes drastically reduced the number of eggs laid by females succeeding in feeding, i.e. fecundity by 98% and egg hatching rate (fertility) by 93% relative to untreated control net. Very few of the resistant females blood fed and survived under the Olyset® Duo with similar number of holes (up to 30) but of these few, the inhibition of reproductive success was 100%. There was no evidence that the Olyset® Duo LN with 150 holes impacted fecundity or fertility of the resistant colony. The efficacy of Olyset® Duo is encouraging and clearly illustrates that this new net might be a promising tool for malaria transmission control and resistance management.


Subject(s)
Anopheles/drug effects , Insect Vectors/drug effects , Insecticide-Treated Bednets , Malaria/prevention & control , Mosquito Control/instrumentation , Permethrin/pharmacology , Pyridines/pharmacology , Animals , Anopheles/genetics , Anopheles/physiology , Benin , Clutch Size/drug effects , Drug Synergism , Equipment Failure , Feeding Behavior/drug effects , Female , Fertility/drug effects , Housing , Insect Proteins/genetics , Insect Vectors/physiology , Insecticide Resistance , Voltage-Gated Sodium Channels/genetics
17.
PLoS Negl Trop Dis ; 9(7): e0003941, 2015.
Article in English | MEDLINE | ID: mdl-26196901

ABSTRACT

BACKGROUND: Buruli ulcer, the third mycobacterial disease after tuberculosis and leprosy, is caused by the environmental mycobacterium M. ulcerans. There is at present no clear understanding of the exact mode(s) of transmission of M. ulcerans. Populations affected by Buruli ulcer are those living close to humid and swampy zones. The disease is associated with the creation or the extension of swampy areas, such as construction of dams or lakes for the development of agriculture. Currently, it is supposed that insects (water bugs and mosquitoes) are host and vector of M. ulcerans. The role of water bugs was clearly demonstrated by several experimental and environmental studies. However, no definitive conclusion can yet be drawn concerning the precise importance of this route of transmission. Concerning the mosquitoes, DNA was detected only in mosquitoes collected in Australia, and their role as host/vector was never studied by experimental approaches. Surprisingly, no specific study was conducted in Africa. In this context, the objective of this study was to investigate the role of mosquitoes (larvae and adults) and other flying insects in ecology of M. ulcerans. This study was conducted in a highly endemic area of Benin. METHODOLOGY/PRINCIPAL FINDINGS: Mosquitoes (adults and larvae) were collected over one year, in Buruli ulcer endemic in Benin. In parallel, to monitor the presence of M. ulcerans in environment, aquatic insects were sampled. QPCR was used to detected M. ulcerans DNA. DNA of M. ulcerans was detected in around 8.7% of aquatic insects but never in mosquitoes (larvae or adults) or in other flying insects. CONCLUSION/SIGNIFICANCE: This study suggested that the mosquitoes don't play a pivotal role in the ecology and transmission of M. ulcerans in the studied endemic areas. However, the role of mosquitoes cannot be excluded and, we can reasonably suppose that several routes of transmission of M. ulcerans are possible through the world.


Subject(s)
Buruli Ulcer/microbiology , Buruli Ulcer/transmission , Insect Vectors/microbiology , Insecta/microbiology , Mycobacterium ulcerans/physiology , Animals , Benin/epidemiology , DNA, Bacterial/isolation & purification , Ecosystem , Humans , Insect Vectors/physiology , Insecta/classification , Insecta/physiology , Larva , Polymerase Chain Reaction/methods , Seasons
18.
PLoS One ; 9(8): e104967, 2014.
Article in English | MEDLINE | ID: mdl-25115830

ABSTRACT

A shift towards early morning biting behavior of the major malaria vector Anopheles funestus have been observed in two villages in south Benin following distribution of long-lasting insecticidal nets (LLINs), but the impact of these changes on the personal protection efficacy of LLINs was not evaluated. Data from human and An. funestus behavioral surveys were used to measure the human exposure to An. funestus bites through previously described mathematical models. We estimated the personal protection efficacy provided by LLINs and the proportions of exposure to bite occurring indoors and/or in the early morning. Average personal protection provided by using of LLIN was high (≥80% of the total exposure to bite), but for LLIN users, a large part of remaining exposure occurred outdoors (45.1% in Tokoli-V and 68.7% in Lokohoué) and/or in the early morning (38.5% in Tokoli-V and 69.4% in Lokohoué). This study highlights the crucial role of LLIN use and the possible need to develop new vector control strategies targeting malaria vectors with outdoor and early morning biting behavior. This multidisciplinary approach that supplements entomology with social science and mathematical modeling illustrates just how important it is to assess where and when humans are actually exposed to malaria vectors before vector control program managers, policy-makers and funders conclude what entomological observations imply.


Subject(s)
Anopheles/physiology , Anopheles/pathogenicity , Insect Bites and Stings/prevention & control , Insect Bites and Stings/parasitology , Insecticide-Treated Bednets , Animals , Behavior , Behavior, Animal , Benin , Circadian Rhythm , Humans , Insect Vectors/parasitology
19.
Malar J ; 13: 247, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-24972637

ABSTRACT

BACKGROUND: One of the control tools to reduce malaria transmission is the use of LLINs. However, several studies show that household bed net use is quite low. A study was developed to better understand the cultural factors that might explain these gaps in Benin. One reason mentioned is that bed nets can catch on fire and cause harm. This paper presents a summary of these findings, their analysis and the ensuing issues. METHODS: This anthropological study is based on an inductive qualitative approach, including 91 semi-structured interviews conducted from July 2011 to March 2012 in a health district in Southern Benin. RESULTS: Fifty-six persons stated that bed nets can catch on fire but do not always refer to specific facts. However, 34 of the 56 people narrate specific events they heard or experienced. 39 accounts were geographically located and situated in time, with various details. In 27 situations, people were burned, for which 12 people reportedly died. DISCUSSION: The disparity between these results and the dearth of bibliographic documentation in the initial search prompted a more in-depth literature review: 16 contributions between 1994 and 2013 were found. Bed net fires were noted in 10 countries, but it is impossible to ascertain the frequency of such events. Moreover, bodily harm can be significant, and several cases of death attributed to bed net fires were noted. CONCLUSIONS: Indisputably, the use of bed nets to reduce the impact of this terrible disease is an optimal control method. However, the perception that LLINs have a potentially negative effect hinders the use rate in the real world, at least for some. If some people fear the risk of fires, this possibility must be addressed during information and prevention sessions on malaria, with a communication strategy tailored to specific social contexts. Moreover, all possible measures should be taken to limit the harm suffered by individuals and their families.


Subject(s)
Fires , Insecticide-Treated Bednets/adverse effects , Malaria/prevention & control , Mosquito Control/instrumentation , Accidents, Home , Adult , Benin/epidemiology , Burns/epidemiology , Burns/etiology , Child , Culture , Equipment Safety , Fear , Female , Fires/prevention & control , Hand Deformities, Acquired/etiology , Humans , Infant , Insecticide-Treated Bednets/statistics & numerical data , Interviews as Topic , Male , Public Opinion , Qualitative Research
20.
Parasit Vectors ; 7: 103, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24620714

ABSTRACT

BACKGROUND: A better understanding of the ecology and spatial-temporal distribution of malaria vectors is essential to design more effective and sustainable strategies for malaria control and elimination. In a previous study, we analyzed presence-absence data of An. funestus, An. coluzzii, and An. gambiae s.s. in an area of southern Benin with high coverage of vector control measures. Here, we further extend the work by analysing the positive values of the dataset to assess the determinants of the abundance of these three vectors and to produce predictive maps of vector abundance. METHODS: Positive counts of the three vectors were assessed using negative-binomial zero-truncated (NBZT) mixed-effect models according to vector control measures and environmental covariates derived from field and remote sensing data. After 8-fold cross-validation of the models, predictive maps of abundance of the sympatric An. funestus, An. coluzzii, and An. gambiae s.s. were produced. RESULTS: Cross-validation of the NBZT models showed a satisfactory predictive accuracy. Almost all changes in abundance between two surveys in the same village were well predicted by the models but abundances for An. gambiae s.s. were slightly underestimated. During the dry season, predictive maps showed that abundance greater than 1 bite per person per night were observed only for An. funestus and An. coluzzii. During the rainy season, we observed both increase and decrease in abundance of An. funestus, which are dependent on the ecological setting. Abundances of both An. coluzzii and An. gambiae s.s. increased during the rainy season but not in the same areas. CONCLUSIONS: Our models helped characterize the ecological preferences of three major African malaria vectors. This works highlighted the importance to study independently the binomial and the zero-truncated count processes when evaluating vector control strategies. The study of the bio-ecology of malaria vector species in time and space is critical for the implementation of timely and efficient vector control strategies.


Subject(s)
Anopheles/physiology , Insect Bites and Stings/epidemiology , Insect Vectors/physiology , Malaria/transmission , Models, Statistical , Mosquito Control , Animals , Benin/epidemiology , Ecology , Environment , Feeding Behavior , Humans , Population Density , Seasons , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...