Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 873: 162119, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36773913

ABSTRACT

Hydrothermal carbonization has gained attention in converting wet organic solid waste into hydrochar with many applications such as solid fuel, energy storage material precursor, fertilizer or soil conditioner. Recently, various catalysts such as organic and inorganic catalysts are employed to guide the properties of the hydrochar. This review presents a summarize and a critical discussion on types of catalysts, process parameters and catalytic mechanisms. The catalytic impact of carboxylic acids is related to their acidity level and the number of carboxylic groups. The catalysis level with strong mineral acids is likely related to the number of hydronium ions liberated from their hydrolysis. The impact of inorganic salts is determined by the Lewis acidity of the cation. The metallic ions in metallic salts may incorporate into the hydrochar and increase the ash of the hydrochar. The selection of catalysts for various applications of hydrochars and the environmental and the techno-economic aspects of the process are also presented. Although some catalysts might enhance the characteristics of hydrochar for various applications, these catalysts may also result in considerable carbon loss, particularly in the case of organic acid catalysts, which may potentially ruin the overall advantage of the process. Overall, depending on the expected application of the hydrochar, the type of catalyst and the amount of catalyst loading requires careful consideration. Some recommendations are made for future investigations to improve laboratory-scale process comprehension and understanding of pathways as well as to encourage widespread industrial adoption.

2.
Sci Total Environ ; 769: 144660, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33736270

ABSTRACT

The processing of duckweed has been included in the list of promising pathways for biofuels production. This property is attributed to its simple manual harvesting method and its ability for high protein or starch content, depending on its species and growing environment. The biofuels production from duckweed, is not only a solution to energy and environmental problems, but also a reliable way to realize the utilization of duckweed. This critical review focuses on the bio-oil production from duckweed via pyrolysis and hydrothermal liquefaction processes. First, characteristics and eco-environmental benefits of duckweed are reviewed. Next, the impacts of different parameters on the properties and distribution of bio-oil from pyrolysis and hydrothermal liquefaction are discussed in detail. Subsequently, the effect of hydrogen donor solvents (as reaction media for upgrading) and catalysts on the upgrading of duckweed bio-oil are extensively discussed. This paper ends with the prospects for further development in thermochemical valorization of duckweed.


Subject(s)
Araceae , Biofuels , Biomass , Plant Oils , Polyphenols , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...