Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 104(4): 892-900, 2020 11.
Article in English | MEDLINE | ID: mdl-32794614

ABSTRACT

In plants, race-specific defence against microbial pathogens is facilitated by resistance (R) genes which correspond to specific pathogen avirulence genes. This study reports the cloning of a blackleg R gene from Brassica napus (canola), Rlm9, which encodes a wall-associated kinase-like (WAKL) protein, a newly discovered class of race-specific plant RLK resistance genes. Rlm9 provides race-specific resistance against isolates of Leptosphaeria maculans carrying the corresponding avirulence gene AvrLm5-9, representing only the second WAKL-type R gene described to date. The Rlm9 protein is predicted to be cell membrane-bound and while not conclusive, our work did not indicate direct interaction with AvrLm5-9. Rlm9 forms part of a distinct evolutionary family of RLK proteins in B. napus, and while little is yet known about WAKL function, the Brassica-Leptosphaeria pathosystem may prove to be a model system by which the mechanism of fungal avirulence protein recognition by WAKL-type R genes can be determined.


Subject(s)
Brassica napus/genetics , Disease Resistance/genetics , Leptosphaeria/pathogenicity , Plant Diseases/immunology , Protein Kinases/metabolism , Brassica napus/immunology , Brassica napus/microbiology , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Kinases/genetics , Species Specificity , Virulence
2.
Mol Plant Microbe Interact ; 32(3): 296-305, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30199341

ABSTRACT

The plant hormone salicylic acid (SA) plays a critical role in defense against biotrophic pathogens such as Plasmodiophora brassicae, which is an obligate pathogen of crucifer species and the causal agent of clubroot disease of canola (Brassica napus). P. brassicae encodes a protein, predicted to be secreted, with very limited homology to benzoic acid (BA)/SA-methyltransferase, designated PbBSMT. PbBSMT has a SA- and an indole-3-acetic acid-binding domain, which are also present in Arabidopsis thaliana BSMT1 (AtBSMT1) and, like AtBSMT1, has been shown to methylate BA and SA. In support of the hypothesis that P. brassicae uses PbBSMT to overcome SA-mediated defenses by converting SA into inactive methyl salicylate (MeSA), here, we show that PbBSMT suppresses local defense and provide evidence that PbBSMT is much more effective than AtBSMT1 at suppressing the levels of SA and its associated effects. Basal SA levels in Arabidopsis plants that constitutively overexpress PbBSMT compared with those in Arabidopsis wild-type Col-0 (WT) were reduced approximately 80% versus only a 50% reduction in plants overexpressing AtBSMT1. PbBSMT-overexpressing plants were more susceptible to P. brassicae than WT plants; they also were partially compromised in nonhost resistance to Albugo candida. In contrast, AtBSMT1-overexpressing plants were not more susceptible than WT to either P. brassicae or A. candida. Furthermore, transgenic Arabidopsis and tobacco plants overexpressing PbBSMT exhibited increased susceptibility to virulent Pseudomonas syringae pv. tomato DC3000 (DC3000) and virulent Pseudomonas syringae pv. tabaci, respectively. Gene-mediated resistance to DC3000/AvrRpt2 and tobacco mosaic virus (TMV) was also compromised in Arabidopsis and Nicotiana tabacum 'Xanthi-nc' plants overexpressing PbBSMT, respectively. Transient expression of PbBSMT or AtBSMT1 in lower leaves of N. tabacum Xanthi-nc resulted in systemic acquired resistance (SAR)-like enhanced resistance to TMV in the distal systemic leaves. Chimeric grafting experiments revealed that, similar to SAR, the development of a PbBSMT-mediated SAR-like phenotype was also dependent on the MeSA esterase activity of NtSABP2 in the systemic leaves. Collectively, these results strongly suggest that PbBSMT is a novel effector, which is secreted by P. brassicae into its host plant to deplete pathogen-induced SA accumulation.


Subject(s)
Arabidopsis , Plasmodiophorida , Salicylic Acid , Virulence , Arabidopsis/microbiology , Arabidopsis Proteins/metabolism , Plant Diseases/microbiology , Plasmodiophorida/metabolism , Plasmodiophorida/pathogenicity , Pseudomonas syringae/physiology , Salicylic Acid/metabolism , Virulence/genetics
3.
iScience ; 3: 177-191, 2018 May 25.
Article in English | MEDLINE | ID: mdl-30428318

ABSTRACT

Leptosphaeria maculans, the causal agent of blackleg disease in canola (Brassica napus), secretes an array of effectors into the host to overcome host defense. Here we present evidence that the L. maculans effector protein AvrLm1 functions as a virulence factor by interacting with the B. napus mitogen-activated protein (MAP) kinase 9 (BnMPK9), resulting in increased accumulation and enhanced phosphorylation of the host protein. Transient expression of BnMPK9 in Nicotiana benthamiana induces cell death, and this phenotype is enhanced in the presence of AvrLm1, suggesting that induction of cell death due to enhanced accumulation and phosphorylation of BnMPK9 by AvrLm1 supports the initiation of necrotrophic phase of L. maculans infection. Stable expression of BnMPK9 in B. napus perturbs hormone signaling, notably salicylic acid response genes, to facilitate L. maculans infection. Our findings provide evidence that a MAP kinase is directly targeted by a fungal effector to modulate plant immunity.

4.
J Plant Physiol ; 201: 42-53, 2016 Aug 20.
Article in English | MEDLINE | ID: mdl-27393919

ABSTRACT

Viroids are the smallest plant pathogens consisting of a single stranded circular RNA molecule with a strong secondary structure, lacking a coat protein or any other proteins. The mechanism of viroid pathogenicity has remained unclear. Recent advances in instrumentation and data mining have made it possible to study the effects of various stresses on primary and secondary metabolisms. Here, we have utilized metabolic profiling approach to show how PSTVd infection alters tomato metabolic profile and the related pathways. Three terminal leaflets of third true leaf of 20-day-old tolerant tomato cultivar 'Moneymaker' were mechanically inoculated by PSTVd intermediate variant cDNAs and samples were taken from eighth leaf, 19days post-inoculation. Metabolites were extracted and analyzed by gas chromatography/mass spectrometry (GC/MS) and subjected to statistical data analysis. Affected pathways were identified by Pathway Tools program and were compared with microarray data previously reported. The study showed that 79 metabolites changed significantly and 23 pathways were identified in relation to these metabolites. Fourteen of these pathways were similar to those reported in other works. The altered pathways in PSTVd infected tomato leaves included, eight cutin and wax biosynthesis, seven pathways that produce defense related compounds, two energy generator pathways, three hormone biosynthesis pathways, two signal transduction pathways, and one nucleotide biosynthesis pathway. Our data on up/down-regulation of pathways supported the data produced on their corresponding gene(s) up/down-regulation.


Subject(s)
Metabolomics , Solanum lycopersicum/metabolism , Solanum lycopersicum/virology , Solanum tuberosum/virology , Viroids/physiology , Cyclopentanes/metabolism , Metabolic Networks and Pathways , Metabolome , Oxylipins/metabolism , Plant Diseases
5.
BMC Genomics ; 17: 272, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-27036196

ABSTRACT

BACKGROUND: The protist Plasmodiophora brassicae is a soil-borne pathogen of cruciferous species and the causal agent of clubroot disease of Brassicas including agriculturally important crops such as canola/rapeseed (Brassica napus). P. brassicae has remained an enigmatic plant pathogen and is a rare example of an obligate biotroph that resides entirely inside the host plant cell. The pathogen is the cause of severe yield losses and can render infested fields unsuitable for Brassica crop growth due to the persistence of resting spores in the soil for up to 20 years. RESULTS: To provide insight into the biology of the pathogen and its interaction with its primary host B. napus, we produced a draft genome of P. brassicae pathotypes 3 and 6 (Pb3 and Pb6) that differ in their host range. Pb3 is highly virulent on B. napus (but also infects other Brassica species) while Pb6 infects only vegetable Brassica crops. Both the Pb3 and Pb6 genomes are highly compact, each with a total size of 24.2 Mb, and contain less than 2 % repetitive DNA. Clustering of genome-wide single nucleotide polymorphisms (SNP) of Pb3, Pb6 and three additional re-sequenced pathotypes (Pb2, Pb5 and Pb8) shows a high degree of correlation of cluster grouping with host range. The Pb3 genome features significant reduction of intergenic space with multiple examples of overlapping untranslated regions (UTRs). Dependency on the host for essential nutrients is evident from the loss of genes for the biosynthesis of thiamine and some amino acids and the presence of a wide range of transport proteins, including some unique to P. brassicae. The annotated genes of Pb3 include those with a potential role in the regulation of the plant growth hormones cytokinin and auxin. The expression profile of Pb3 genes, including putative effectors, during infection and their potential role in manipulation of host defence is discussed. CONCLUSION: The P. brassicae genome sequence reveals a compact genome, a dependency of the pathogen on its host for some essential nutrients and a potential role in the regulation of host plant cytokinin and auxin. Genome annotation supported by RNA sequencing reveals significant reduction in intergenic space which, in addition to low repeat content, has likely contributed to the P. brassicae compact genome.


Subject(s)
Brassica/parasitology , Genome, Protozoan , Host-Parasite Interactions/genetics , Plasmodiophorida/genetics , Arabidopsis , Crops, Agricultural/parasitology , Cytokinins/metabolism , DNA, Protozoan/genetics , Host Specificity , Indoleacetic Acids/metabolism , Plant Diseases/parasitology , Sequence Analysis, RNA , Transcriptome
6.
Mol Biotechnol ; 54(3): 756-69, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23208548

ABSTRACT

A small number of stress-responsive genes, such as those of the mitochondrial F1F0-ATP synthase complex, are encoded by both the nucleus and mitochondria. The regulatory mechanism of these joint products is mysterious. The expression of 6-kDa subunit (MtATP6), a relatively uncharacterized nucleus-encoded subunit of F0 part, was measured during salinity stress in salt-tolerant and salt-sensitive cultivated wheat genotypes, as well as in the wild wheat genotypes, Triticum and Aegilops using qRT-PCR. The MtATP6 expression was suddenly induced 3 h after NaCl treatment in all genotypes, indicating an early inducible stress-responsive behavior. Promoter analysis showed that the MtATP6 promoter includes cis-acting elements such as ABRE, MYC, MYB, GTLs, and W-boxes, suggesting a role for this gene in abscisic acid-mediated signaling, energy metabolism, and stress response. It seems that 6-kDa subunit, as an early response gene and nuclear regulatory factor, translocates to mitochondria and completes the F1F0-ATP synthase complex to enhance ATP production and maintain ion homeostasis under stress conditions. These communications between nucleus and mitochondria are required for inducing mitochondrial responses to stress pathways. Dual targeting of 6-kDa subunit may comprise as a mean of inter-organelle communication and save energy for the cell. Interestingly, MtATP6 showed higher and longer expression in the salt-tolerant wheat and the wild genotypes compared to the salt-sensitive genotype. Apparently, salt-sensitive genotypes have lower ATP production efficiency and weaker energy management than wild genotypes; a stress tolerance mechanism that has not been transferred to cultivated genotypes.


Subject(s)
Cell Nucleus/metabolism , Mitochondria/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Stress, Physiological/physiology , Base Sequence , Cell Nucleus/enzymology , Computer Simulation , Energy Metabolism/physiology , Gene Expression Regulation, Plant/drug effects , Genotype , Homeostasis , Mitochondrial Proton-Translocating ATPases/genetics , Molecular Sequence Data , Plant Proteins/metabolism , Salt Tolerance , Signal Transduction , Sodium Chloride/pharmacology , Transcription Factors , Triticum/genetics
7.
Microbiologyopen ; 1(3): 311-25, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23170230

ABSTRACT

The plant growth-promoting rhizobacterium Pseudomonas fluorescens WCS374r produces several iron-regulated metabolites, including the fluorescent siderophore pseudobactin (Psb374), salicylic acid (SA), and pseudomonine (Psm), a siderophore that contains a SA moiety. After purification of Psb374 from culture supernatant of WCS374r, its structure was determined following isoelectrofocusing and tandem mass spectrometry, and found to be identical to the fluorescent siderophore produced by P. fluorescens ATCC 13525. To study the role of SA and Psm production in colonization of Arabidopsis thaliana roots and in induced systemic resistance (ISR) against Pseudomonas syringae pv. tomato (Pst) by strain WCS374r, mutants disrupted in the production of these metabolites were obtained by homologous recombination. These mutants were further subjected to transposon Tn5 mutagenesis to generate mutants also deficient in Psb374 production. The mutants behaved similar to the wild type in both their Arabidopsis rhizosphere-colonizing capacity and their ability to elicit ISR against Pst. We conclude that Psb374, SA, and Psm production by P. fluorescens WCS374r are not required for eliciting ISR in Arabidopsis.

8.
Plant Physiol ; 148(4): 1996-2012, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18945932

ABSTRACT

Selected strains of nonpathogenic rhizobacteria can reduce disease in foliar tissues through the induction of a defense state known as induced systemic resistance (ISR). Compared with the large body of information on ISR in dicotyledonous plants, little is known about the mechanisms underlying rhizobacteria-induced resistance in cereal crops. Here, we demonstrate the ability of Pseudomonas fluorescens WCS374r to trigger ISR in rice (Oryza sativa) against the leaf blast pathogen Magnaporthe oryzae. Using salicylic acid (SA)-nonaccumulating NahG rice, an ethylene-insensitive OsEIN2 antisense line, and the jasmonate-deficient mutant hebiba, we show that this WCS374r-induced resistance is regulated by an SA-independent but jasmonic acid/ethylene-modulated signal transduction pathway. Bacterial mutant analysis uncovered a pseudobactin-type siderophore as the crucial determinant responsible for ISR elicitation. Root application of WCS374r-derived pseudobactin (Psb374) primed naive leaves for accelerated expression of a pronounced multifaceted defense response, consisting of rapid recruitment of phenolic compounds at sites of pathogen entry, concerted expression of a diverse set of structural defenses, and a timely hyperinduction of hydrogen peroxide formation putatively driving cell wall fortification. Exogenous SA application alleviated this Psb374-modulated defense priming, while Psb374 pretreatment antagonized infection-induced transcription of SA-responsive PR genes, suggesting that the Psb374- and SA-modulated signaling pathways are mutually antagonistic. Interestingly, in sharp contrast to WCS374r-mediated ISR, chemical induction of blast resistance by the SA analog benzothiadiazole was independent of jasmonic acid/ethylene signaling and involved the potentiation of SA-responsive gene expression. Together, these results offer novel insights into the signaling circuitry governing induced resistance against M. oryzae and suggest that rice is endowed with multiple blast-effective resistance pathways.


Subject(s)
Magnaporthe/pathogenicity , Oligopeptides/pharmacology , Oryza/microbiology , Plant Diseases/microbiology , Pseudomonas fluorescens/physiology , Salicylic Acid/pharmacology , Cell Wall/drug effects , Cell Wall/microbiology , Cell Wall/ultrastructure , Hydrogen Peroxide/metabolism , Immunity, Innate/drug effects , Immunity, Innate/physiology , Iron/metabolism , Oryza/cytology , Oryza/drug effects , Oryza/physiology , Plant Leaves/cytology , Plant Leaves/drug effects , Plant Leaves/microbiology , Plant Roots/drug effects , Plant Roots/microbiology , Plant Roots/physiology , Pseudomonas fluorescens/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...