Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Lipids Health Dis ; 15: 95, 2016 May 17.
Article in English | MEDLINE | ID: mdl-27184891

ABSTRACT

Robust associations between lipoprotein(a) [Lp(a)] and CVD outcomes among general populations have been published in previous studies. However, associations in high risk primary prevention and secondary prevention populations are less well defined. In order to investigate this further, a systematic review was performed including prospective studies, which assessed the relationship between Lp(a) and CVD outcomes using multivariable analyses. Additional information was gathered on Lp(a) assays, multivariable modelling and population characteristics. Literature searches from inception up to December 2015 retrieved 2850 records. From these 60 studies were included. Across 39 primary prevention studies in the general population (hazard ratios ranged from 1.16 to 2.97) and seven high risk primary prevention studies (hazard ratios ranged from 1.01 to 3.7), there was evidence of a statistically significant relationship between increased Lp(a) and an increased risk of future CVD. Results in 14 studies of secondary prevention populations were also suggestive of a modest statistically significant relationship (hazard ratios ranged from 0.75 to 3.7).Therefore current evidence would suggest that increased Lp(a) levels are associated with modest increases in the risk of future CVD events in both general and higher risk populations. However, further studies are required to confirm these findings.


Subject(s)
Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Lipoprotein(a)/blood , Aged , Humans , Risk Factors
3.
Cell ; 137(4): 635-46, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19450513

ABSTRACT

Insulin resistance and elevated glucagon levels result in nonsuppressible hepatic glucose production and hyperglycemia in patients with type 2 diabetes. The CREB coactivator complex controls transcription of hepatic gluconeogenic enzyme genes. Here, we show that both the antidiabetic agent metformin and insulin phosphorylate the transcriptional coactivator CREB binding protein (CBP) at serine 436 via PKC iota/lambda. This event triggers the dissociation of the CREB-CBP-TORC2 transcription complex and reduces gluconeogenic enzyme gene expression. Mice carrying a germline mutation of this CBP phosphorylation site (S436A) demonstrate resistance to the hypoglycemic effect of both insulin and metformin. Obese, hyperglycemic mice display hepatic insulin resistance, but metformin is still effective in treating the hyperglycemia of these mice since it stimulates CBP phosphorylation by bypassing the block in insulin signaling. Our findings point to CBP phosphorylation at Ser436 by metformin as critical for its therapeutic effect, and as a potential target for pharmaceutical intervention.


Subject(s)
CREB-Binding Protein/metabolism , Gluconeogenesis , Hypoglycemic Agents/pharmacology , Insulin Resistance , Insulin/pharmacology , Liver/metabolism , Metformin/pharmacology , Amino Acid Sequence , Animals , Conserved Sequence , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Insulin/metabolism , Mice , Mice, Obese , Molecular Sequence Data , Phosphorylation , Protein Kinase C/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...