Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 51(24): 9522-9530, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35695088

ABSTRACT

The polar magnetic chalcogenide phase Ba5Fe2ZnIn4S15 was synthesized and its structure was solved by single crystal XRD. It is the first member with a 3d magnetic metal (Fe3+) in the Pb5ZnGa6S15-type structure family of wide bandgap materials with non-linear optical properties. The three-dimensional framework possesses a low dimensional magnetic character through the presence of weakly interacting zig-zag chains made of corner-sharing FeS4 tetrahedra forming chain 1, [FeS2]-∞. The latter chains are separated by InS4 tetrahedra providing weak magnetic super-super exchanges between them. The framework is also constituted by chain 2, [In3Zn1S9]7-∞ (chain of T2-supertetrahedra) extended similarly to chain 1 along the direction c and connected through InS4 tetrahedra. Symmetry analysis shows that the intrinsic polarization observed in this class of materials is mostly due to the anionic framework. Preliminary magnetic measurements and density functional theory calculations suggest dominating antiferromagnetic interactions with strong super-exchange coupling within the Fe-chains.

2.
Inorg Chem ; 59(14): 9486-9490, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32597182

ABSTRACT

Two new bismuth compounds, oxovanadate Bi3(VO4)O3 and oxoarsenate Bi3.5(AsO4)(OH)0.5O3.5, were prepared using supercritical hydrothermal pressure. Dealing with the anionic sublattice, both crystal structures are built on anti-oxo-OBi4/OBi3 or -OBi4/OBi5 units connected together in infinite corrugated 2D layers surrounded by isolated XO4 (X = V or As) tetrahedra. These edifices complete a series initiated by the recent Bi3(PO4)O3 prepared under similar conditions. With the latter being assigned to the "simplest" bioxophosphate in terms of structural complexity, this aspect was investigated among the other compounds in their chemical ternaries. These phases are suggested to be high-pressure polymorphs, not possible to tackle when working at ambient pressure and temperature conditions.

3.
Inorg Chem ; 55(5): 2252-60, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26901292

ABSTRACT

A new lanthanum oxide, KLa5O5(VO4)2, was synthesized using a flux growth technique that involved solid-state reaction under an air atmosphere at 900 °C. The crystal structure was solved and refined using an innovative approach recently established and based on three-dimensional (3D) electron diffraction data, using precession of the electron beam and then validated against Rietveld refinement and denisty functional theory (DFT) calculations. It crystallizes in a monoclinic unit cell with space group C2/m and has unit cell parameters of a = 20.2282(14) Å, b = 5.8639(4) Å, c = 12.6060(9) Å, and ß = 117.64(1)°. Its structure is built on Cresnel-like two-dimensional (2D) units (La5O5) of 4*3 (OLa4) tetrahedra, which run parallel to (001) plane, being surrounded by isolated VO4 tetrahedra. Four isolated vanadate groups create channels that host K(+) ions. Substitution of K(+) cations by another alkali metal is possible, going from lithium to rubidium. Li substitution led to a similar phase with a primitive monoclinic unit cell. A complementary selected area electron diffraction (SAED) study highlighted diffuse streaks associated with stacking faults observed on high-resolution electron microscopy (HREM) images of the lithium compound. Finally, preliminary catalytic tests for ethanol oxidation are reported, as well as luminescence evidence. This paper also describes how solid-state chemists can take advantages of recent progresses in electron crystallography, assisted by DFT calculations and powder X-ray diffraction (PXRD) refinements, to propose new structural types with potential applications to the physicist community.

SELECTION OF CITATIONS
SEARCH DETAIL
...