Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
2.
Cell Death Dis ; 13(4): 302, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35379773

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia characterized by progressive memory loss and cognitive decline. Although neuroinflammation and oxidative stress are well-recognized features of AD, their correlations with the early molecular events characterizing the pathology are not yet well clarified. Here, we characterize the role of RAGE-TXNIP axis in neuroinflammation in relation to amyloid-beta (Aß) burden in both in vivo and in vitro models. In the hippocampus of 5xFAD mice microglial activation, cytokine secretion, and glial fibrillary acidic protein-enhanced expression are paralleled with increased TXNIP expression. TXNIP silencing or its pharmacological inhibition prevents neuroinflammation in those mice. TXNIP is also associated with RAGE and Aß. In particular, RAGE-TXNIP axis is required for targeting Aß in mitochondria, leading to mitochondrial dysfunction and oxidative stress. Silencing of TXNIP or inhibition of RAGE activation reduces Aß transport from the cellular surface to mitochondria, restores mitochondrial functionality, and mitigates Aß toxicity. Furthermore, Aß shuttling into mitochondria promotes Drp1 activation and exacerbates mitochondrial dysfunction, which induces NLRP3 inflammasome activation, leading to secretion of IL-1ß and activation of the pyroptosis-associated protein Gasdermin D (GSDMD). Downregulation of RAGE-TXNIP axis inhibits Aß-induced mitochondria dysfunction, inflammation, and induction of GSDMD. Herein we unveil a new pathway driven by TXNIP that links the mitochondrial transport of Aß to the activation of Drp1 and the NLRP3 inflammasome, promoting the secretion of IL-1ß and the pyroptosis pathway associated with GSDMD cleavage. Altogether these data shed new light on a novel mechanism of action of RAGE-TXNIP axis in microglia, which is intertwined with Aß and ultimately causes mitochondria dysfunction and NLRP3 inflammasome cascade activation, suggesting TXNIP as a druggable target to be better deepened for AD.


Subject(s)
Alzheimer Disease , Inflammasomes , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , Mice , Microglia/metabolism , Mitochondria/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Thioredoxins/metabolism
3.
Mol Neurobiol ; 57(8): 3307-3333, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32519243

ABSTRACT

Research on energy homeostasis has focused on neuronal signaling; however, the role of glial cells has remained little explored. Glial endozepines exert anorexigenic actions by mechanisms which remain poorly understood. In this context, the present study was designed to decipher the mechanisms underlying the anorexigenic action of endozepines and to investigate their potential curative effect on high-fat diet-induced obesity. We carried out a combination of physiological, pharmacological, and molecular analyses together to dissect the underlying mechanisms of endozepine-induced hypophagia. To evaluate the potential anti-obesity effect of endozepines, different model of obesity were used, i.e., ob/ob and diet-induced obese mice. We show that the intracerebral administration of endozepines enhances satiety by targeting anorexigenic brain circuitry and induces STAT3 phosphorylation, a hallmark of leptin signaling. Strikingly, endozepines are entirely ineffective at reducing food intake in the presence of a circulating leptin antagonist and in leptin-deficient mice (ob/ob) but potentiate the reduced food intake and weight loss induced by exogenous leptin administration in these animals. Endozepines reversed high fat diet-induced obesity by reducing food intake and restored leptin-induced STAT3 phosphorylation in the hypothalamus. Interestingly, we observed that glucose and insulin synergistically enhance tanycytic endozepine expression and release. Finally, endozepines, which induce ERK activation necessary for leptin transport into the brain in cultured tanycytes, require tanycytic leptin receptor expression to promote STAT3 phosphorylation in the hypothalamus. Our data identify endozepines as potential anti-obesity compounds in part through the modulation of the LepR-ERK-dependent tanycytic leptin shuttle.


Subject(s)
Diazepam Binding Inhibitor/metabolism , Diet, High-Fat , Hypothalamus/metabolism , Leptin/metabolism , Neuroglia/metabolism , Obesity/metabolism , Animals , Eating/physiology , Energy Metabolism/physiology , Homeostasis/physiology , Leptin/genetics , Male , Mice, Inbred C57BL , Mice, Obese
4.
Nature ; 566(7744): E9, 2019 02.
Article in English | MEDLINE | ID: mdl-30723267

ABSTRACT

In this Letter, the vertical error bars were missing from Fig. 3b and 3c. This figure has been corrected online.

5.
Nature ; 566(7745): 538-542, 2019 02.
Article in English | MEDLINE | ID: mdl-30675058

ABSTRACT

Oligodendrocytes wrap nerve fibres in the central nervous system with layers of specialized cell membrane to form myelin sheaths1. Myelin is destroyed by the immune system in multiple sclerosis, but myelin is thought to regenerate and neurological function can be recovered. In animal models of demyelinating disease, myelin is regenerated by newly generated oligodendrocytes, and remaining mature oligodendrocytes do not seem to contribute to this process2-4. Given the major differences in the dynamics of oligodendrocyte generation and adaptive myelination between rodents and humans5-9, it is not clear how well experimental animal models reflect the situation in multiple sclerosis. Here, by measuring the integration of 14C derived from nuclear testing in genomic DNA10, we assess the dynamics of oligodendrocyte generation in patients with multiple sclerosis. The generation of new oligodendrocytes was increased several-fold in normal-appearing white matter in a subset of individuals with very aggressive multiple sclerosis, but not in most subjects with the disease, demonstrating an inherent potential to substantially increase oligodendrocyte generation that fails in most patients. Oligodendrocytes in shadow plaques-thinly myelinated lesions that are thought to represent remyelinated areas-were old in patients with multiple sclerosis. The absence of new oligodendrocytes in shadow plaques suggests that remyelination of lesions occurs transiently or not at all, or that myelin is regenerated by pre-existing, and not new, oligodendrocytes in multiple sclerosis. We report unexpected oligodendrocyte generation dynamics in multiple sclerosis, and this should guide the use of current, and the development of new, therapies.


Subject(s)
Cell Proliferation , Multiple Sclerosis/pathology , Oligodendroglia/pathology , Adult , Age of Onset , Aging/pathology , Aging/physiology , Case-Control Studies , Cell Differentiation , Cell Separation , Female , Humans , Male , Multiple Sclerosis/genetics , Myelin Sheath/metabolism , Myelin Sheath/pathology , Oligodendroglia/cytology , Oligodendroglia/metabolism , Remyelination , White Matter/cytology , White Matter/metabolism , White Matter/pathology
6.
Epigenetics ; 13(10-11): 1127-1140, 2018.
Article in English | MEDLINE | ID: mdl-30395773

ABSTRACT

The central nervous system monitors modifications in metabolic parameters or hormone levels (leptin) and elicits adaptive responses such as food intake and glucose homeostasis regulation. Particularly, within the hypothalamus, pro-opiomelanocortin (POMC) neurons are crucial regulators of energy balance. Consistent with a pivotal role of the melanocortin system in the control of energy homeostasis, disruption of the Pomc gene causes hyperphagia and obesity. Pomc gene expression is tightly controlled by different mechanisms. Interestingly, recent studies pointed to a key role for micro ribonucleic acid (miRNAs) in the regulation of gene expression. However, the role of miRNAs in the leptin sensitivity in hypothalamic melanocortin system has never been assessed. We developed a transgenic mouse model (PDKO) with a partial deletion of the miRNA processing enzyme DICER specifically in POMC neurons. PDKO mice exhibited a normal body weight but a decrease of food intake. Interestingly, PDKO mice had decreased metabolic rate by reduction of VO2 consumption and CO2 production which could explain that PDKO mice have normal weight while eating less. Interestingly, we observed an increase of leptin sensitivity in the POMC neurons of PDKO mice which could explain the decrease of food intake in this model. We also observed an increase in the expression of genes involved in the function of brown adipose tissue that is in polysynaptic contact with the POMC neurons. In summary, these results support the hypothesis that Dicer-derived miRNAs may be involved in the effect of leptin on POMC neurons activity.


Subject(s)
Hypothalamus/metabolism , Leptin/metabolism , MicroRNAs/genetics , Adipose Tissue, Brown/metabolism , Animals , Body Weight , Eating , Male , Mice , MicroRNAs/metabolism , Neurons/metabolism , Oxygen Consumption , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Ribonuclease III/genetics
7.
Stem Cell Res ; 20: 58-66, 2017 04.
Article in English | MEDLINE | ID: mdl-28395742

ABSTRACT

Oligodendrocytes are part of the glial cells located in the central nervous system, capable of providing trophic support to neurons and ensheathing their axons. These cells can become dysfunctional under pathologic condition. Rodent and human pluripotent stem cells are inexhaustible sources for producing oligodendrocytes that can be used for disease modeling and cell replacement therapy studies. They also offer many opportunities to model the contribution of oligodendrocytes in non-genetic disorders such as multiple system atrophy. In this method article, we provide robust and reproducible differentiation protocols to obtain oligodendrocyte progenitor cells and purify them using fluorescence activated cell sorting.


Subject(s)
Cell Culture Techniques/methods , Oligodendroglia/cytology , Animals , Cell Differentiation , Cell Lineage , Cells, Cultured , Humans , Myelin Basic Protein/metabolism , Oligodendroglia/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism
8.
Front Neurosci ; 11: 181, 2017.
Article in English | MEDLINE | ID: mdl-28424580

ABSTRACT

The central control of energy balance involves a highly regulated neuronal network within the hypothalamus and the dorsal vagal complex. In these structures, pro-opiomelanocortin (POMC) neurons are known to reduce meal size and to increase energy expenditure. In addition, leptin, a peripheral signal that relays information regarding body fat content, modulates the activity of melanocortin pathway neurons including POMC-, Agouti-related peptide (AgRP)/Neuropeptide Y (NPY)-, melanocortin receptors (MC3R and MC4R)-expressing neurons. MicroRNAs (miRNAs) are short non-coding RNAs of 22-26 nucleotides that post-transcriptionally interfere with target gene expression by binding to their mRNAs. Evidence has demonstrated that miRNAs play important roles in the central regulation of energy balance. In this context, different studies identified miRNAs including miR-200 family, miR-103, or miR-488 that could target the genes of melanocortin pathway. More precisely, these different miRNAs can modulate energy homeostasis by affecting leptin transduction pathway in the POMC, or AgRP/NPY neurons. This article reviews the role of identified miRNAs in the modulation of melanocortin pathway in the context of energy homeostasis.

9.
Brain Behav Immun ; 58: 209-217, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27444966

ABSTRACT

Retinoic acid early induced transcript-1 (RAE-1) glycoproteins are ligands of the activating immune receptor NKG2D. They are known as stress molecules induced in pathological conditions. We previously reported that progenitor cells express RAE-1 in physiological conditions and we described a correlation between RAE-1 expression and cell proliferation. In addition, we showed that Raet1 transcripts are induced in the spinal cord of experimental autoimmune encephalomyelitis (EAE) mice. EAE is a model for multiple sclerosis which is accompanied by microglia proliferation and activation, recruitment of immune cells and neurogenesis. We herein studied the time course expression of the two members of the Raet1 gene family present in C57BL/6 mice, namely Raet1d and Raet1e, in the spinal cord during EAE. We report that Raet1d and Raet1e genes are induced early upon EAE onset and reach a maximal expression at the peak of the pathology. We show that myeloid cells, i.e. macrophages as well as microglia, are cellular sources of Raet1 transcripts. We also demonstrate that only Raet1d expression is induced in microglia, whereas macrophages expressed both Raet1d and Raet1e. Furthermore, we investigated the dynamics of RAE-1 expression in microglia cultures. RAE-1 induction correlated with cell proliferation but not with M1/M2 phenotypic orientation. We finally demonstrate that macrophage colony-stimulating factor (M-CSF) is a major factor controlling RAE-1 expression in microglia.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Membrane Proteins/metabolism , Microglia/physiology , Spinal Cord/pathology , Animals , Cell Proliferation , Gene Expression , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Spinal Cord/metabolism
10.
Front Neurosci ; 10: 318, 2016.
Article in English | MEDLINE | ID: mdl-27445682

ABSTRACT

Endocrine-disrupting chemicals (EDCs) are diverse natural and synthetic chemicals that may alter various mechanisms of the endocrine system and produce adverse developmental, reproductive, metabolic, and neurological effects in both humans and wildlife. Research on EDCs has revealed that they use a variety of both nuclear receptor-mediated and non-receptor-mediated mechanisms to modulate different components of the endocrine system. The molecular mechanisms underlying the effects of EDCs are still under investigation. Interestingly, some of the effects of EDCs have been observed to pass on to subsequent unexposed generations, which can be explained by the gametic transmission of deregulated epigenetic marks. Epigenetics is the study of heritable changes in gene expression that occur without a change in the DNA sequence. Epigenetic mechanisms, including histone modifications, DNA methylation, and specific micro-RNAs (miRNAs) expression, have been proposed to mediate transgenerational transmission and can be triggered by environmental factors. MiRNAs are short non-coding RNA molecules that post-transcriptionally repress the expression of genes by binding to 3'-untranslated regions of the target mRNAs. Given that there is mounting evidence that miRNAs are regulated by hormones, then clearly it is important to investigate the potential for environmental EDCs to deregulate miRNA expression and action.

11.
NPJ Parkinsons Dis ; 2: 16009, 2016.
Article in English | MEDLINE | ID: mdl-28725696

ABSTRACT

Induced pluripotent stem cells (iPSCs) are becoming an important source of pre-clinical models for research focusing on neurodegeneration. They offer the possibility for better understanding of common and divergent pathogenic mechanisms of brain diseases. Moreover, iPSCs provide a unique opportunity to develop personalized therapeutic strategies, as well as explore early pathogenic mechanisms, since they rely on the use of patients' own cells that are otherwise accessible only post-mortem, when neuronal death-related cellular pathways and processes are advanced and adaptive. Neurodegenerative diseases are in majority of unknown cause, but mutations in specific genes can lead to familial forms of these diseases. For example, mutations in the superoxide dismutase 1 gene lead to the motor neuron disease amyotrophic lateral sclerosis (ALS), while mutations in the SNCA gene encoding for alpha-synuclein protein lead to familial Parkinson's disease (PD). The generations of libraries of familial human ALS iPSC lines have been described, and the iPSCs rapidly became useful models for studying cell autonomous and non-cell autonomous mechanisms of the disease. Here we report the generation of a comprehensive library of iPSC lines of familial PD and an associated synucleinopathy, multiple system atrophy (MSA). In addition, we provide examples of relevant neural cell types these iPSC can be differentiated into, and which could be used to further explore early disease mechanisms. These human cellular models will be a valuable resource for identifying common and divergent mechanisms leading to neurodegeneration in PD and MSA.

12.
Stem Cell Reports ; 5(2): 174-84, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26235891

ABSTRACT

In this study, we sought evidence for alpha-synuclein (ASYN) expression in oligodendrocytes, as a possible endogenous source of ASYN to explain its presence in glial inclusions found in multiple system atrophy (MSA) and Parkinson's disease (PD). We identified ASYN in oligodendrocyte lineage progenitors isolated from the rodent brain, in oligodendrocytes generated from embryonic stem cells, and in induced pluripotent stem cells produced from fibroblasts of a healthy individual and patients diagnosed with MSA or PD, in cultures in vitro. Notably, we observed a significant decrease in ΑSYN during oligodendrocyte maturation. Additionally, we show the presence of transcripts in PDGFRΑ/CD140a(+) cells and SOX10(+) oligodendrocyte lineage nuclei isolated by FACS from rodent and human healthy and diseased brains, respectively. Our work identifies ASYN in oligodendrocyte lineage cells, and it offers additional in vitro cellular models that should provide significant insights of the functional implication of ASYN during oligodendrocyte development and disease.


Subject(s)
Cell Lineage , Neural Stem Cells/metabolism , Oligodendroglia/metabolism , alpha-Synuclein/metabolism , Animals , Cell Differentiation , Cells, Cultured , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice , Neural Stem Cells/cytology , Oligodendroglia/cytology , Species Specificity , alpha-Synuclein/genetics
13.
Stem Cell Res ; 15(1): 203-20, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26100233

ABSTRACT

Astrocytes play a critical role during the development and the maintenance of the CNS in health and disease. Yet, their lack of accessibility from fetuses and from the brain of diseased patients has hindered our understanding of their full implication in developmental and pathogenic processes. Human pluripotent stem cells (PSCs) are an alternative source to obtain large quantities of astrocytes in vitro, for mechanistic studies of development and disease. However, these studies often require highly pure populations of astrocytes, which are not always achieved, depending on the PSC lines and protocols used. Here, we describe the generation and characterization of human PSC reporter lines expressing TagRFP driven by the ABC1D region of the human GFAP promoter, as new cellular model for generating homogenous population of astrocytes generated from CNS regionally defined PSC-derived neural progenitors. GFA(ABC1D)::TagRFP-expressing astrocytes can be purified by fluorescent-activated cell sorting and maintain a bright expression for several additional weeks. These express canonical astrocyte markers NF1A, S100ß, CX43, GLAST, GS and CD44. These new cellular models, from which highly pure populations of fluorescence-expressing astrocytes can be obtained, provide a new platform for studies where pure or fluorescently labeled astrocyte populations are necessary, for example to assess pro-inflammatory cytokine and chemokine release in response to specific treatment, and uptake and degradation of fluorescently labeled pathogenic proteins, as reported in this study.


Subject(s)
Astrocytes/cytology , Cell Separation/methods , Genes, Reporter , Mesencephalon/cytology , Neural Stem Cells/cytology , Pluripotent Stem Cells/cytology , Spinal Cord/cytology , Astrocytes/metabolism , Cell Line , Clone Cells , Flow Cytometry , Glial Fibrillary Acidic Protein/metabolism , Humans , Inflammation/pathology , Time Factors , Transgenes
14.
Front Cell Neurosci ; 9: 172, 2015.
Article in English | MEDLINE | ID: mdl-25999818

ABSTRACT

The central nervous system (CNS) monitors modifications in metabolic parameters or hormone levels and elicits adaptive responses such as food intake regulation. Particularly, within the hypothalamus, leptin modulates the activity of pro-opiomelanocortin (POMC) neurons which are critical regulators of energy balance. Consistent with a pivotal role of the melanocortin system in the control of energy homeostasis, disruption of the POMC gene causes hyperphagia and obesity. MicroRNAs (miRNAs) are short noncoding RNA molecules that post-transcriptionally repress the expression of genes by binding to 3'-untranslated regions (3'UTR) of the target mRNAs. However, little is known regarding the role of miRNAs that target POMC 3'UTR in the central control energy homeostasis. Particularly, their interaction with the leptin signaling pathway remain unclear. First, we used common prediction programs to search for potential miRNAs target sites on 3'UTR of POMC mRNA. This screening identified a set of conserved miRNAs seed sequences for mir-383, mir-384-3p, and mir-488. We observed that mir-383, mir-384-3p, and mir-488 are up-regulated in the hypothalamus of leptin deficient ob/ob mice. In accordance with these observations, we also showed that mir-383, mir-384-3p, and mir-488 were increased in db/db mice that exhibit a non-functional leptin receptor. The intraperitoneal injection of leptin down-regulated the expression of these miRNAs of interest in the hypothalamus of ob/ob mice showing the involvement of leptin in the expression of mir-383, mir-384-3p, and mir-488. Finally, the evaluation of responsivity to intracerebroventricular administration of leptin exhibited that a chronic treatment with leptin decreased mir-488 expression in hypothalamus of C57BL/6 mice. In summary, these results suggest that leptin modulates the expression of miRNAs that target POMC mRNA in hypothalamus.

15.
Toxicol Lett ; 232(3): 601-11, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25549547

ABSTRACT

SCOPE: Deoxynivalenol (DON) is the most common fungi toxin contaminating cereals and cereal-derived products. High consumption of DON is implicated in mycotoxicoses and causes a set of symptoms including diarrhea, vomiting, reduced weight gain or immunologic effects. However, such clinical intoxications are rare in humans, who are most frequently, exposed to low DON doses without developing acute symptoms. The adverse effect of chronically consumed low DON doses can not be totally excluded. Using a mouse model, we evaluated the impact on inflammatory status of subchronic administration of DON given at doses comparable to the daily human consumption. METHODS AND RESULTS: The inflammatory status was evaluated in mice receiving 1, 2.5 or 25µg/kg bw/day DON during a 10 or 30 days period. The systemic interleukin-1 beta (IL-1ß) concentrations were evaluated by Elisa and inflammatory biomarker mRNA expressions were quantified by qPCR within brain structures and peripheral organs. While DON intake failed to modify physiological markers, we observed a systemic IL-1ß increase and a modulation of pro-inflammatory gene expression in brain structures, liver, duodenum and adipose tissue. CONCLUSION: We bring here the first evidence that subchronic DON intake, at doses that match daily human intake, induces, in a murine model, a central and peripheral low grade inflammation.


Subject(s)
Inflammation/chemically induced , Trichothecenes/toxicity , Animals , Biomarkers , Dose-Response Relationship, Drug , Interleukin-1beta , Male , Mice , Mice, Inbred C57BL , Trichothecenes/administration & dosage
16.
Histol Histopathol ; 30(2): 125-39, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25014735

ABSTRACT

Epidemiological studies reveal growing evidence that most cases of Alzheimer`s Disease (AD) likely involve a combination of genetic and environmental risk factors. Identifying and validating these risk factors remains one of the most critical scientific challenges. Several diseases appear to have strong implications for neurodegeneration leading to dementia. This risk encompasses different forms of cardiovascular disease, carotid atherosclerosis, history of hypertension or high cholesterol, Type II diabetes, stroke or transient ischemic attack and brain trauma. However, the molecular pathways that are common and central in the progression of these diseases and AD are not yet elucidated. Unveiling these critical mechanisms at the molecular level is necessary for the development of therapeutic strategies aimed at preventing AD progression. The Receptor for Advanced Glycation Endproducts (RAGE) plays a key role in all the diseases that represent a risk for AD. RAGE-mediated signaling also contributes to neurodegeneration in AD, suggesting that it may mediate the effect of risk factors in promoting AD. We will summarize the current knowledge on the role of RAGE in pathologies promoting AD and in AD progression. We will also provide evidence showing the relevance of RAGE-induced inflammation as a risk pathway that is implicated in AD pathophysiology.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/pathology , Inflammation/genetics , Inflammation/pathology , Receptors, Immunologic/genetics , Disease Progression , Receptor for Advanced Glycation End Products , Risk Factors
17.
Brain Behav Immun ; 37: 54-72, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24355099

ABSTRACT

T-2 toxin is one of the most toxic Fusarium-derived trichothecenes found on cereals and constitutes a widespread contaminant of agricultural commodities as well as commercial foods. Low doses toxicity is characterized by reduced weight gain. To date, the mechanisms by which this mycotoxin profoundly modifies feeding behavior remain poorly understood and more broadly the effects of T-2 toxin on the central nervous system (CNS) have received limited attention. Through an extensive characterization of sickness-like behavior induced by T-2 toxin, we showed that its per os (p.o.) administration affects not only feeding behavior but also energy expenditure, glycaemia, body temperature and locomotor activity. Using c-Fos expression mapping, we identified the neuronal structures activated in response to T-2 toxin and observed that the pattern of neuronal populations activated by this toxin resembled that induced by inflammatory signals. Interestingly, part of neuronal pathways activated by the toxin were NUCB-2/nesfatin-1 expressing neurons. Unexpectedly, while T-2 toxin induced a strong peripheral inflammation, the brain exhibited limited inflammatory response at a time point when anorexia was ongoing. Unilateral vagotomy partly reduced T-2 toxin-induced brainstem neuronal activation. On the other hand, intracerebroventricular (icv) T-2 toxin injection resulted in a rapid (<1h) reduction in food intake. Thus, we hypothesized that T-2 toxin could signal to the brain through neuronal and/or humoral pathways. The present work provides the first demonstration that T-2 toxin modifies feeding behavior by interfering with central neuronal networks devoted to central energy balance. Our results, with a particular attention to peripheral inflammation, strongly suggest that inflammatory mediators partake in the T-2 toxin-induced anorexia and other symptoms. In view of the broad human and breeding animal exposure to T-2 toxin, this new mechanism may lead to reconsider the impact of the consumption of this toxin on human health.


Subject(s)
Brain/drug effects , Brain/metabolism , Energy Metabolism/drug effects , T-2 Toxin/toxicity , Animals , Antioxidants/metabolism , Blood Glucose/analysis , Calorimetry , Feeding Behavior/drug effects , Illness Behavior/drug effects , Liver/metabolism , Male , Mice, Inbred C57BL , Motor Activity/drug effects , Oxidative Stress , Spleen/metabolism
18.
Front Neurosci ; 6: 45, 2012.
Article in English | MEDLINE | ID: mdl-22509147

ABSTRACT

Spinal cord injury (SCI) triggers a complex cellular response at the injury site, leading to the formation of a dense scar tissue. Despite this local tissue remodeling, the consequences of SCI at the cellular level in distant rostral sites (i.e., brain), remain unknown. In this study, we asked whether cervical SCI could alter cell dynamics in neurogenic areas of the adult rat forebrain. To this aim, we quantified BrdU incorporation and determined the phenotypes of newly generated cells (neurons, astrocytes, or microglia) during the subchronic and chronic phases of injury. We find that subchronic SCI leads to a reduction of BrdU incorporation and neurogenesis in the olfactory bulb and in the hippocampal dentate gyrus. By contrast, subchronic SCI triggers an increased BrdU incorporation in the dorsal vagal complex of the hindbrain, where most of the newly generated cells are identified as microglia. In chronic condition 90 days after SCI, BrdU incorporation returns to control levels in all regions examined, except in the hippocampus, where SCI produces a long-term reduction of neurogenesis, indicating that this structure is particularly sensitive to SCI. Finally, we observe that SCI triggers an acute inflammatory response in all brain regions examined, as well as a hippocampal-specific decline in BDNF levels. This study provides the first demonstration that forebrain neurogenesis is vulnerable to a distal SCI.

SELECTION OF CITATIONS
SEARCH DETAIL
...