Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 31(23): 235711, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32109895

ABSTRACT

Phase transformations of Ge under compression/decompression cycle at room temperature were studied in a diamond anvil cell (DAC) using in situ synchrotron x-ray diffraction, Raman spectroscopy and near infrared absorption techniques. Upon compression similar behavior is observed in nanowires and in bulk although a higher stability is observed in nanowires. The cubic-diamond phase (Ge-3C), the most energetically favorable phase, transforms into the ß-tin metallic phase at high pressure and the reverse Ge-ß-tin to Ge-3C transformation is generally inhibited by kinetics when pressure is released. While the transformation in Ge bulk leads mostly to Ge-ST12 phase, the loading/unloading cycle of Ge nanowires in DAC leads back to Ge-3C, exhibiting unprecedented size effects. A comprehensive characterization of the final states is described.

2.
Nanotechnology ; 30(37): 375704, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31195385

ABSTRACT

We have studied the thermal conductivity of Ge and Si allotrope heterostructured nanowires (NWs) synthesized by phase transformation. The NWs are composed of successive hexagonal 2H and cubic diamond 3C crystal phases along the 〈111〉 axis. Using 3ω-scanning thermal microscopy on NWs embedded in a silica matrix, we present the first experimental evidence of thermal conductivity reduction in such allotrope 2H/3C heterostructured NWs. In Ge heterostructured 2H/3C NWs, similarly to homogeneous 3C NWs, we show a thermal conductivity reduction when the NW diameter decreases. In addition, in Si and Ge NWs, we observe a reduced thermal conductivity due to the heterostructuration 2H/3C. We evidence that the temperature of phase transformation, which influences the size and the number of 2H domains, can constitute an efficient parameter to tune the thermal conductivity.

3.
Nano Lett ; 18(11): 7075-7084, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30185053

ABSTRACT

Semiconducting nanowires (NWs) offer the unprecedented opportunity to host different crystal phases in a nanostructure, which enables the formation of polytypic heterostructures where the material composition is unchanged. This characteristic boosts the potential of polytypic heterostructured NWs for optoelectronic and phononic applications. In this work, we investigate cubic Ge NWs where small (∼20 nm) hexagonal domains are formed due to a strain-induced phase transformation. By combining a nondestructive optical technique (Raman spectroscopy) with density-functional theory (DFT) calculations, we assess the phonon properties of hexagonal Ge, determine the crystal phase variations along the NW axis, and, quite remarkably, reconstruct the relative orientation of the two polytypes. Moreover, we provide information on the electronic band alignment of the heterostructure at points of the Brillouin zone different from the one (Γ) where the direct band gap recombination in hexagonal Ge takes place. We demonstrate the versatility of Raman spectroscopy and show that it can be used to determine the main crystalline, phononic, and electronic properties of the most challenging type of heterostructure (a polytypic, nanoscale heterostructure with constant material composition). The general procedure that we establish can be applied to several types of heterostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...