Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 7(9): 9801-14, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26755653

ABSTRACT

Gliomas are the most commonly diagnosed primary tumors of the central nervous system (CNS). Median times of survival are dismal regardless of the treatment approach, underlying the need to develop more effective therapies. Modulation of the immune system is a promising strategy as innate and adaptive immunity play important roles in cancer progression. Glioma associated microglia and macrophages (GAMs) can comprise over 30% of the cells in glioma biopsies. Gliomas secrete cytokines that suppress the anti-tumorigenic properties of GAMs, causing them to secrete factors that support the tumor's spread and growth. Neuropilin 1 (Nrp1) is a transmembrane receptor that in mice both amplifies pro-angiogenic signaling in the tumor microenvironment and affects behavior of innate immune cells. Using a Cre-lox system, we generated mice that lack expression of Nrp1 in GAMs. We demonstrate, using an in vivo orthotopic glioma model, that tumors in mice with Nrp1-deficient GAMs exhibit less vascularity, grow at a slower pace, and are populated by increased numbers of anti-tumorigenic GAMs. Moreover, glioma survival times in mice with Nrp1-deficient GAMs were significantly longer. Treating wild-type mice with a small molecule inhibitor of Nrp1's b1 domain, EG00229, which we show here is selective for Nrp1 over Nrp2, yielded an identical outcome. Nrp1-deficient or EG00229-treated wild-type microglia exhibited a shift towards anti-tumorigenicity as evident by altered inflammatory marker profiles in vivo and decreased SMAD2/3 activation when conditioned in the presence of glioma-derived factors. These results provide support for the proposal that pharmacological inhibition of Nrp1 constitutes a potential strategy for suppressing glioma progression.


Subject(s)
Antineoplastic Agents/therapeutic use , Glioma/drug therapy , Macrophages/immunology , Microglia/pathology , Neuropilin-1 , Animals , Cell Line, Tumor , Disease Progression , Glioma/mortality , Glioma/pathology , Humans , Mice , Mice, Inbred C57BL , Neuropilin-1/antagonists & inhibitors , Neuropilin-1/deficiency , Neuropilin-1/genetics , Smad2 Protein/metabolism , Smad3 Protein/metabolism
2.
Chembiochem ; 15(8): 1161-70, 2014 May 26.
Article in English | MEDLINE | ID: mdl-24771685

ABSTRACT

The interaction between VEGF-A and its neuropilin (NRP) receptors mediates a number of important biological effects. NRP1 and the related molecule NRP2 are widely expressed on multiple tumour types and throughout the tumour vasculature, and are emerging as critical molecules required for the progression of angiogenic diseases. Given the increasing evidence supporting a role for NRP1 in tumour development, there is growing interest in developing inhibitors of NRP1 interactions with VEGF and its other ligands. In order to probe the interaction we synthesised a number of exon 7- and 8-derived bicyclic peptides with N-terminal lipophilic groups and found a simple N-octanoyl derivative (EG00086) to be the most potent and functionally active. Detailed modelling studies indicated that new intramolecular hydrogen bonds were formed, stabilising the structure and possibly contributing to the potency. Removal of a salt bridge between D142 and R164 implicated in VEGF-A binding to neuropilin-1 had a minor effect on potency. Isothermal calorimetry was used to assess binding of EG00086 to NRP1 and NRP2, and the stability of the peptide in serum and in vivo was investigated. EG00086 is a potent blocker of VEGF-promoted cellular adhesion to extracellular matrices, and phosphorylation of p130Cas contributes to this effect.


Subject(s)
Neuropilin-1/metabolism , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Vascular Endothelial Growth Factor A/chemistry , Vascular Endothelial Growth Factor A/metabolism , Binding Sites , Cell Adhesion/drug effects , Cell Survival/drug effects , Cells, Cultured , Crk-Associated Substrate Protein/metabolism , Exons/genetics , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Humans , Lipopeptides/chemistry , Lipopeptides/metabolism , Lipopeptides/pharmacology , Molecular Dynamics Simulation , Neuropilin-1/chemistry , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/pharmacology , Phosphorylation/drug effects , Protein Binding , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...