Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38730768

ABSTRACT

A promising method for additive manufacturing that makes it possible to produce intricate and personalized parts is selective laser melting (SLM). However, the mechanical properties of as-corroded SLM parts are still areas of concern. This research investigates the mechanical behavior of SLM parts that are exposed to a saline environment containing a 3.5% NaCl solution for varying lengths of time. The exposure times chosen for this study were 10 days, 20 days, and 30 days. The results reveal that the tensile strength of the parts is significantly affected by the duration of exposure. Additionally, the study also examined the influence of porosity on the corrosion behavior of the parts. The analysis included studying the mass loss of the parts over time, and a regression analysis was conducted to analyze the relationship between exposure time and mass loss. In addition, the utilization of scanning electron microscopy (SEM) and X-ray photo spectroscopy (XPS) techniques yielded valuable insights into the fundamental mechanisms accountable for the observed corrosion and mechanical behavior. It was found that the presence of corrosion products (i.e., oxide layer) and pitting contributed to the degradation of the SLM parts in the saline environment. This research emphasizes the importance of considering part thickness in the design of SLM components for corrosive environments and provides insights for enhancing their performance and durability.

2.
Polymers (Basel) ; 16(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38543334

ABSTRACT

Recent progress in additive manufacturing, also known as 3D printing, has offered several benefits, including high geometrical freedom and the ability to create bioinspired structures with intricate details. Mantis shrimp can scrape the shells of prey molluscs with its hammer-shaped stick, while beetles have highly adapted forewings that are lightweight, tough, and strong. This paper introduces a design approach for bioinspired lattice structures by mimicking the internal microstructures of a beetle's forewing, a mantis shrimp's shell, and a mantis shrimp's dactyl club, with improved mechanical properties. Finite element analysis (FEA) and experimental characterisation of 3D printed polylactic acid (PLA) samples with bioinspired structures were performed to determine their compression and impact properties. The results showed that designing a bioinspired lattice with unit cells parallel to the load direction improved quasi-static compressive performance, among other lattice structures. The gyroid honeycomb lattice design of the insect forewings and mantis shrimp dactyl clubs outperformed the gyroid honeycomb design of the mantis shrimp shell, with improvements in ultimate mechanical strength, Young's modulus, and drop weight impact. On the other hand, hybrid designs created by merging two different designs reduced bending deformation to control collapse during drop weight impact. This work holds promise for the development of bioinspired lattices employing designs with improved properties, which can have potential implications for lightweight high-performance applications.

3.
Materials (Basel) ; 17(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38399163

ABSTRACT

Research efforts have been dedicated to predicting microstructural evolution during solidification processes. The main secondary arm spacing controls the mushy zone's permeability. The aim of the current work was to build a simple sub-grid model that describes the growth and coarsening of secondary side dendrite arms. The idea was to reduce the complexity of the curvature distribution with only two adjacent side arms in concurrence. The model was built and applied to the directional solidification of Al-06wt%Cu alloy in a Bridgman experiment. The model showed its effectiveness in predicting coarsening phenomena during the solidification of Al-06wt%Cu alloy. The results showed a rapid growth of both arms at an earlier stage of solidification, followed by the remelting of the smaller arm. In addition, the results are in good agreement with an available time-dependent expression which covers the growth and coarsening. Such model can be implemented as a sub-grid model in volume average models for the prediction of the evolution of the main secondary arms spacing during macroscopic solidification processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...