Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Med Technol ; 5: 1162174, 2023.
Article in English | MEDLINE | ID: mdl-37181098

ABSTRACT

Objective: A medical device must undergo rigorous regulatory processes to verify its safety and effectiveness while in use. In low-and middle-income countries like Uganda however, medical device innovators and designers face challenges around bringing a device from ideation to being market-ready. This is mainly attributed to a lack of clear regulatory procedures among other factors. In this paper, we illustrate the current landscape of investigational medical devices regulation in Uganda. Methods: Information about the different bodies involved in regulation of medical devices in Uganda was obtained online. Nine medical device teams whose devices have gone through the Ugandan regulatory system were interviewed to gain insights into their experiences with the regulatory system. Interviews focused on the challenges they faced, how they navigated them, and factors that supported their progress towards putting their devices on the market. Results: We identified different bodies that are part of the stepwise regulatory pathway of investigational medical devices in Uganda and roles played by each in the regulatory process. Experiences of the medical device teams collected showed that navigation through the regulatory system was different for each team and progress towards market readiness was fuelled by funding, simplicity of device, and mentorship. Conclusion: Medical devices regulation exists in Uganda but is characterised by a landscape that is still in development which thereby affects the progress of investigational medical devices.

2.
Analyst ; 145(23): 7741-7751, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33000767

ABSTRACT

The fight against tropical diseases such as malaria requires the development of innovative biosensing techniques. Diagnostics must be rapid and robust to ensure prompt case management and to avoid further transmission. The malaria biomarker hemozoin can catalyze atom transfer radical polymerizations (ATRP), which we exploit in a polymerization-amplified biosensing assay for hemozoin based on the precipitation polymerization of N-isopropyl acrylamide (NIPAAm). The reaction conditions are systematically investigated using synthetic hemozoin to gain fundamental understanding of the involved reactions and to greatly reduce the amplification time, while maintaining the sensitivity of the assay. The use of excess ascorbate allows oxygen to be consumed in situ but leads to the formation of reactive oxygen species and to the decomposition of the initiator 2-hydroxyethyl 2-bromoisobutyrate (HEBIB). Addition of sodium dodecyl sulfate (SDS) and pyruvate results in better differentiation between the blank and hemozoin-containing samples. Optimized reaction conditions (including reagents, pH, and temperature) reduce the amplification time from 37 ± 5 min to 3 ± 0.5 min while maintaining a low limit of detection of 1.06 ng mL-1. The short amplification time brings the precipitation polymerization assay a step closer to a point-of-care diagnostic device for malaria. Future efforts will be dedicated to the isolation of hemozoin from clinical samples.


Subject(s)
Hemeproteins , Malaria , Biomarkers , Humans , Malaria/diagnosis , Polymerization
3.
J Control Release ; 284: 112-121, 2018 08 28.
Article in English | MEDLINE | ID: mdl-29906555

ABSTRACT

Drug delivery strategies generally use inert materials, such as high molecular weight polymers, to encapsulate and control the release rate of therapeutic drugs. Diffusion governs release and depends on the ease of permeation of the polymer alongside the device thickness. Yet in applications such as osteoarthritis, the physiological constraints and limited intra-articular joint space prevent the use of large, solid drug delivery implants. Other investigators have explored the use of micro- and nanoparticle drug delivery systems. However, the small size of the systems limits the total drug that may be encapsulated and its short diffusion distance causes rapid release. Ordinarily, the extremely low diffusivity of a polymer fluid would make this an unsuitable delivery system. Our technology takes advantage of specific molecular interactions between drug and polymer, which can control the rate of release beyond diffusion. With this "affinity-based drug delivery", we have shown that delivery rates from solid polymer can be prolonged from hours and days, to weeks and months. In this paper, we demonstrate that this affinity-based mechanism also applies to low diffusivity fluid-phase polymers. They show release rates that are substantially slower than chemically similar polymers incapable of forming those inclusion complexes. The similarity of this study's liquid polymers to the viscoelastic fluids used in current clinical practice makes it an ample delivery system for osteoarthritic application. We confirmed the capacity of anti-inflammatory delivery of corticosteroids: hydrocortisone, triamcinolone, and dexamethasone; from both solid implants and polymer fluids. Further, we demonstrated that viscoelastic properties are widely tunable, and within the range of native synovial fluid. Lastly, we determined these polymer fluids have no impact on the differentiation of mesenchymal stem cells to cartilage and are not cytotoxic to a common cell line.


Subject(s)
Adrenal Cortex Hormones/administration & dosage , Cyclodextrins/chemistry , Delayed-Action Preparations/chemistry , Osteoarthritis/drug therapy , Polymers/chemistry , Viscosupplements/chemistry , Adrenal Cortex Hormones/pharmacokinetics , Cell Line , Cyclodextrins/administration & dosage , Delayed-Action Preparations/administration & dosage , Diffusion , Drug Delivery Systems , Drug Liberation , Humans , Injections , Polymers/administration & dosage , Viscosupplements/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...