Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
2.
Article in English | MEDLINE | ID: mdl-38820123

ABSTRACT

RATIONALE: Volatile organic compounds (VOCs) in asthmatic breath may be associated with sputum eosinophilia. We developed a volatile biomarker-signature to predict sputum eosinophilia in asthma. METHODS: VOCs emitted into the space above sputum samples (headspace) from severe asthmatics (n=36) were collected onto sorbent tubes and analysed using thermal desorption gas chromatography-mass spectrometry (TD-GC-MS). Elastic net regression identified stable VOCs associated with sputum eosinophilia ≥3% and generated a volatile biomarker signature. This VOC signature was validated in breath samples from: (I) acute asthmatics according to blood eosinophilia ≥0.3x109cells/L or sputum eosinophilia of ≥ 3% in the UK EMBER consortium (n=65) and U-BIOPRED-IMI consortium (n=42). Breath samples were collected onto sorbent tubes (EMBER) or Tedlar bags (U-BIOPRED) and analysed by gas-chromatography-mass spectrometry (GC×GC-MS -EMBER or GC-MS -U-BIOPRED). MAIN RESULTS: The in vitro headspace identified 19 VOCs associated with sputum eosinophilia and the derived VOC signature yielded good diagnostic accuracy for sputum eosinophilia ≥ 3% in headspace (AUROC (95% CI) 0.90(0.80-0.99), p<0.0001), correlated inversely with sputum eosinophil % (rs= -0.71, p<0.0001) and outperformed FeNO (AUROC (95% CI) 0.61(0.35-0.86). Analysis of exhaled breath in replication cohorts yielded a VOC signature AUROC (95% CI) for acute asthma exacerbations of 0.89(0.76-1.0) (EMBER cohort) with sputum eosinophilia and 0.90(0.75-1.0) in U-BIOPRED - again outperforming FeNO in U-BIOPRED 0.62 (0.33-0.90). CONCLUSIONS: We have discovered and provided early-stage clinical validation of a volatile biomarker signature associated with eosinophilic airway inflammation. Further work is needed to translate our discovery using point of care clinical sensors.

3.
Respir Res ; 25(1): 228, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811970

ABSTRACT

BACKGROUND: Respiratory viral infections are major drivers of chronic obstructive pulmonary disease (COPD) exacerbations. Interferon-ß is naturally produced in response to viral infection, limiting replication. This exploratory study aimed to demonstrate proof-of-mechanism, and evaluate the efficacy and safety of inhaled recombinant interferon-ß1a (SNG001) in COPD. Part 1 assessed the effects of SNG001 on induced sputum antiviral interferon-stimulated gene expression, sputum differential cell count, and respiratory function. Part 2 compared SNG001 and placebo on clinical efficacy, sputum and serum biomarkers, and viral clearance. METHODS: In Part 1, patients (N = 13) with stable COPD were randomised 4:1 to SNG001 or placebo once-daily for three days. In Part 2, patients (N = 109) with worsening symptoms and a positive respiratory viral test were randomised 1:1 to SNG001 or placebo once-daily for 14 days in two Groups: A (no moderate exacerbation); B (moderate COPD exacerbation [i.e., acute worsening of respiratory symptoms treated with antibiotics and/or oral corticosteroids]). RESULTS: In Part 1, SNG001 upregulated sputum interferon gene expression. In Part 2, there were minimal SNG001-placebo differences in the efficacy endpoints; however, whereas gene expression was initially upregulated by viral infection, then declined on placebo, levels were maintained with SNG001. Furthermore, the proportion of patients with detectable rhinovirus (the most common virus) on Day 7 was lower with SNG001. In Group B, serum C-reactive protein and the proportion of patients with purulent sputum increased with placebo (suggesting bacterial infection), but not with SNG001. The overall adverse event incidence was similar with both treatments. CONCLUSIONS: Overall, SNG001 was well-tolerated in patients with COPD, and upregulated lung antiviral defences to accelerate viral clearance. These findings warrant further investigation in a larger study. TRIAL REGISTRATION: EU clinical trials register (2017-003679-75), 6 October 2017.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/virology , Male , Female , Middle Aged , Aged , Administration, Inhalation , Double-Blind Method , Nebulizers and Vaporizers , Sputum/virology , Sputum/metabolism , Treatment Outcome , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Disease Progression , Interferon-beta/administration & dosage
4.
Article in English | MEDLINE | ID: mdl-38635834

ABSTRACT

BACKGROUND: The anti-IgE monoclonal, omalizumab, is widely used for severe asthma. This study aimed to identify biomarkers that predict clinical improvement during one year of omalizumab treatment. METHODS: 1-year, open-label, Study of Mechanisms of action of Omalizumab in Severe Asthma (SoMOSA) involving 216 severe (GINA step 4/5) uncontrolled atopic asthmatics (≥2 severe exacerbations in previous year) on high-dose inhaled corticosteroids, long-acting ß-agonists, ± mOCS. It had two phases: 0-16 weeks, to assess early clinical improvement by Global Evaluation of Therapeutic Effectiveness (GETE), and 16-52 weeks, to assess late responses by ≥50% reduction in exacerbations or dose of maintenance oral corticosteroids (mOCS). All participants provided samples (exhaled breath, blood, sputum, urine) before and after 16 weeks of omalizumab treatment. RESULTS: 191 patients completed phase 1; 63% had early improvement. Of 173 who completed phase 2, 69% had reduced exacerbations by ≥50%, while 57% (37/65) on mOCS reduced their dose by ≥50%. The primary outcome 2, 3-dinor-11-ß-PGF2α, GETE and standard clinical biomarkers (blood and sputum eosinophils, exhaled nitric oxide, serum IgE) did not predict either clinical response. Five breathomics (GC-MS) and 5 plasma lipid biomarkers strongly predicted the ≥50% reduction in exacerbations (receiver operating characteristic area under the curve (AUC): 0.780 and 0.922, respectively) and early responses (AUC:0.835 and 0.949, respectively). In independent cohorts, the GC-MS biomarkers differentiated between severe and mild asthma. Conclusions This is the first discovery of omics biomarkers that predict improvement to a biologic for asthma. Their prospective validation and development for clinical use is justified. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

6.
Tissue Barriers ; : 2300580, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38179897

ABSTRACT

Lipids and their mediators have important regulatory functions in many cellular processes, including the innate antiviral response. The aim of this study was to compare the lipid membrane composition of in vitro differentiated primary bronchial epithelial cells (PBECs) with ex vivo bronchial brushings and to establish whether any changes in the lipid membrane composition affect antiviral defense of cells from donors without and with severe asthma. Using mass spectrometry, we showed that the lipid membrane of in vitro differentiated PBECs was deprived of polyunsaturated fatty acids (PUFAs) compared to ex vivo bronchial brushings. Supplementation of the culture medium with arachidonic acid (AA) increased the PUFA-content to more closely match the ex vivo membrane profile. Rhinovirus (RV16) infection of AA-supplemented cultures from healthy donors resulted in significantly reduced viral replication while release of inflammatory mediators and prostaglandin E2 (PGE2) was significantly increased. Indomethacin, an inhibitor of prostaglandin-endoperoxide synthases, suppressed RV16-induced PGE2 release and significantly reduced CXCL-8/IL-8 release from AA-supplemented cultures indicating a link between PGE2 and CXCL8/IL-8 release. In contrast, in AA-supplemented cultures from severe asthmatic donors, viral replication was enhanced whereas PTGS2 expression and PGE2 release were unchanged and CXCL8/IL-8 was significantly reduced in response to RV16 infection. While the PTGS2/COX-2 pathway is initially pro-inflammatory, its downstream products can promote symptom resolution. Thus, reduced PGE2 release during an RV-induced severe asthma exacerbation may lead to prolonged symptoms and slower recovery. Our data highlight the importance of reflecting the in vivo lipid profile in in vitro cell cultures for mechanistic studies.

7.
J Allergy Clin Immunol Pract ; 12(4): 938-947.e6, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38036249

ABSTRACT

BACKGROUND: Breathing pattern disorder (BPD) reflects altered biomechanical patterns of breathing that drive breathing difficulty and commonly accompanies difficult-to-treat asthma. Diagnosis of BPD has no gold standard, but Nijmegen Questionnaire (NQ) >23 is commonly used. OBJECTIVES: We sought to advance clinical characterization of BPD and better understand the clinical utility of NQ in difficult asthma in patients from the Wessex AsThma CoHort of difficult asthma (WATCH) study. METHODS: Associations between demographic and clinical factors in difficult asthma and BPD, ascertained by clinical diagnosis (yes/no, n = 476), by NQ scores (≤23: normal [no suggestion of BPD] and >23: abnormal [suggested BPD], n = 372), as well as the continuous raw NQ scores were assessed in univariate models to identify significant risk factors associated with the 3 BPD outcomes. For the clinician-diagnosed and NQ-based BPD, associations of continuous factors were assessed using the independent samples t test or the Mann-Whitney U test as appropriate for the data distribution or by the Spearman correlation test. Dichotomous associations were evaluated using χ2 tests. Multivariable logistic (dichotomous outcomes) and linear regression models (continuous outcomes) were developed to identify predictive factors associated with clinician-diagnosed and NQ-based BPD, dichotomous and continuous. Patients with data on NQ scores were grouped into NQ quartiles (low, moderate, high, and very high). The patterns of association of the quartiles with 4 health-related questionnaire outcomes were assessed using linear regression analyses. RESULTS: Multivariable regression identified that clinically diagnosed BPD was associated with female sex (odds ratio [OR]: 1.85; 95% confidence interval [CI]: 1.07, 3.20), comorbidities (rhinitis [OR: 2.46; 95% CI: 1.45, 4.17], gastroesophageal reflux disease [GORD] [OR: 2.77; 95% CI: 1.58, 4.84], inducible laryngeal obstruction [OR: 4.37; 95% CI: 2.01, 9.50], and any psychological comorbidity [OR: 1.86; 95% CI: 1.13, 3.07]), and health care usage (exacerbations [OR: 1.07; 95% CI: 1.003, 1.14] and previous intensive care unit (ICU) admissions [OR: 2.03; 95% CI: 1.18, 3.47]). Abnormal NQ-based BPD diagnosis was associated with history of eczema (OR: 1.83; 95% CI: 1.07, 3.14), GORD (OR: 1.94; 95% CI: 1.15, 3.27), or any psychological comorbidity (OR: 4.29; 95% CI: 2.64, 6.95) at multivariable regression. Differences between clinical and NQ-based BPD traits were also found with 42% discordance in BPD state between these definitions. Multivariable linear regression analysis with NQ as a continuous outcome showed positive association with worse asthma outcomes (admission to ICU, P = .037), different phenotypic traits (female sex, P = .001; ever smoker, P = .025), and greater multimorbidity (GORD, P = .002; sleep apnea, P = .04; and any psychological comorbidity, P < .0001). CONCLUSION: BPD is associated with worse health outcomes and negative health impacts in difficult asthma within a multimorbidity disease model. It therefore merits better recognition and prompt treatment. Clinical diagnosis and NQ offer different perspectives on BPD, so this goal may be best addressed by considering clinical features alongside the magnitude of NQ.


Subject(s)
Asthma , Gastroesophageal Reflux , Respiration Disorders , Humans , Female , Asthma/drug therapy , Respiration Disorders/epidemiology , Comorbidity , Respiration , Risk Factors , Gastroesophageal Reflux/epidemiology
8.
EBioMedicine ; 99: 104936, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38128411

ABSTRACT

BACKGROUND: Eosinophilic and neutrophilic asthma defined by high levels of blood and sputum eosinophils and neutrophils exemplifies the inflammatory heterogeneity of asthma, particularly severe asthma. We analysed the serum and sputum proteome to identify biomarkers jointly associated with these different phenotypes. METHODS: Proteomic profiles (N = 1129 proteins) were assayed in sputum (n = 182) and serum (n = 574) from two cohorts (U-BIOPRED and ADEPT) of mild-moderate and severe asthma by SOMAscan. Using least absolute shrinkage and selection operator (LASSO)-penalised logistic regression in a stability selection framework, we sought sparse sets of proteins associated with either eosinophilic or neutrophilic asthma with and without adjustment for established clinical factors including oral corticosteroid use and forced expiratory volume. FINDINGS: We identified 13 serum proteins associated with eosinophilic asthma, including 7 (PAPP-A, TARC/CCL17, ALT/GPT, IgE, CCL28, CO8A1, and IL5-Rα) that were stably selected while adjusting for clinical factors yielding an AUC of 0.84 (95% CI: 0.83-0.84) compared to 0.62 (95% CI: 0.61-0.63) for clinical factors only. Sputum protein analysis selected only PAPP-A (AUC = 0.81 [95% CI: 0.80-0.81]). 12 serum proteins were associated with neutrophilic asthma, of which 5 (MMP-9, EDAR, GIIE/PLA2G2E, IL-1-R4/IL1RL1, and Elafin) complemented clinical factors increasing the AUC from 0.63 (95% CI: 0.58-0.67) for the model with clinical factors only to 0.89 (95% CI: 0.89-0.90). Our model did not select any sputum proteins associated with neutrophilic status. INTERPRETATION: Targeted serum proteomic profiles are a non-invasive and scalable approach for subtyping of neutrophilic and eosinophilic asthma and for future functional understanding of these phenotypes. FUNDING: U-BIOPRED has received funding from the Innovative Medicines Initiative (IMI) Joint Undertaking under grant agreement no. 115010, resources of which are composed of financial contributions from the European Union's Seventh Framework Programme (FP7/2007-2013), and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies' in-kind contributions (www.imi.europa.eu). ADEPT was funded by Johnson & Johnson/Janssen pharmaceutical Company.


Subject(s)
Asthma , Sputum , Humans , Proteomics , Pregnancy-Associated Plasma Protein-A/metabolism , Asthma/metabolism , Neutrophils/metabolism , Blood Proteins/metabolism
9.
J Asthma Allergy ; 16: 1333-1345, 2023.
Article in English | MEDLINE | ID: mdl-38144877

ABSTRACT

Background: Despite most of the asthma population having mild disease, the mild asthma phenotype is poorly understood. Here, we aim to address this gap in knowledge by extensively characterising the mild asthma phenotype and comparing this with difficult-to-treat asthma. Methods: We assessed two real-world adult cohorts from the South of England using an identical methodology: the Wessex AsThma CoHort of difficult asthma (WATCH) (n=498) and a mild asthma cohort from the comparator arm of the Epigenetics Of Severe Asthma (EOSA) study (n=67). Data acquisition included detailed clinical, health and disease-related questionnaires, anthropometry, allergy and lung function testing, plus biological samples (blood and sputum) in a subset. Results: Mild asthma is predominantly early-onset and is associated with type-2 (T2) inflammation (atopy, raised fractional exhaled nitric oxide (FeNO), blood/sputum eosinophilia) plus preserved lung function. A high prevalence of comorbidities and multimorbidity was observed in mild asthma, particularly depression (58.2%) and anxiety (56.7%). In comparison to difficult asthma, mild disease showed similar female predominance (>60%), T2-high inflammation and atopy prevalence, but lower peripheral blood/airway neutrophil counts and preserved lung function. Mild asthma was also associated with a greater prevalence of current smokers (20.9%). A multi-component T2-high inflammatory measure was comparable between the cohorts; T2-high status 88.1% in mild asthma and 93.5% in difficult asthma. Conclusion: Phenotypic characterisation of mild asthma identified early-onset disease with high prevalence of current smokers, T2-high inflammation and significant multimorbidity burden. Early comprehensive assessment of mild asthma patients could help prevent potential later progression to more complex severe disease.

10.
ERJ Open Res ; 9(6)2023 Nov.
Article in English | MEDLINE | ID: mdl-38020570

ABSTRACT

Background: Vaccination is vital for achieving population immunity to severe acute respiratory syndrome coronavirus 2, but vaccination hesitancy presents a threat to achieving widespread immunity. Vaccine acceptance in chronic potentially immunosuppressed patients is largely unclear, especially in patients with asthma. The aim of this study was to investigate the vaccination experience in people with severe asthma. Methods: Questionnaires about vaccination beliefs (including the Vaccination Attitudes Examination (VAX) scale, a measure of vaccination hesitancy-related beliefs), vaccination side-effects, asthma control and overall safety perceptions following coronavirus disease 2019 (COVID-19) vaccination were sent to patients with severe asthma in 12 European countries between May and June 2021. Results: 660 participants returned completed questionnaires (87.4% response rate). Of these, 88% stated that they had been, or intended to be, vaccinated, 9.5% were undecided/hesitant and 3% had refused vaccination. Patients who hesitated or refused vaccination had more negative beliefs towards vaccination. Most patients reported mild (48.2%) or no side-effects (43.8%). Patients reporting severe side-effects (5.7%) had more negative beliefs. Most patients (88.8%) reported no change in asthma symptoms after vaccination, while 2.4% reported an improvement, 5.3% a slight deterioration and 1.2% a considerable deterioration. Almost all vaccinated (98%) patients would recommend vaccination to other severe asthma patients. Conclusions: Uptake of vaccination in patients with severe asthma in Europe was high, with a small minority refusing vaccination. Beliefs predicted vaccination behaviour and side-effects. Vaccination had little impact on asthma control. Our findings in people with severe asthma support the broad message that COVID-19 vaccination is safe and well tolerated.

11.
Sci Rep ; 13(1): 20946, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38017061

ABSTRACT

SARS-CoV-2 directly targets alveolar epithelial cells and can lead to surfactant deficiency. Early reports suggested surfactant replacement may be effective in improving outcomes. The aim of the study to assess the feasibility and efficacy of nebulized surfactant in mechanically ventilated COVID-19 patients. Patients were randomly assigned to receive open-labelled bovine nebulized surfactant or control (ratio 3-surfactant: 2-control). This was an exploratory dose-response study starting with 1080 mg of surfactant delivered at 3 time points (0, 8 and 24 h). After completion of 10 patients, the dose was reduced to 540 mg, and the frequency of nebulization was increased to 5/6 time points (0, 12, 24, 36, 48, and an optional 72 h) on the advice of the Trial Steering Committee. The co-primary outcomes were improvement in oxygenation (change in PaO2/FiO2 ratio) and ventilation index at 48 h. 20 patients were recruited (12 surfactant and 8 controls). Demographic and clinical characteristics were similar between groups at presentation. Nebulized surfactant administration was feasible. There was no significant improvement in oxygenation at 48 h overall. There were also no differences in secondary outcomes or adverse events. Nebulized surfactant administration is feasible in mechanically ventilated patients with COVID-19 but did not improve measures of oxygenation or ventilation.


Subject(s)
COVID-19 , Pulmonary Surfactants , Adult , Humans , Pulmonary Surfactants/therapeutic use , SARS-CoV-2 , Surface-Active Agents
12.
ERJ Open Res ; 9(5)2023 Sep.
Article in English | MEDLINE | ID: mdl-37868143

ABSTRACT

Rationale: Patients with severe asthma are dependent upon treatment with high doses of inhaled corticosteroids (ICS) and often also oral corticosteroids (OCS). The extent of endogenous androgenic anabolic steroid (EAAS) suppression in asthma has not previously been described in detail. The objective of the present study was to measure urinary concentrations of EAAS in relation to exogenous corticosteroid exposure. Methods: Urine collected at baseline in the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease outcomes) study of severe adult asthmatics (SA, n=408) was analysed by quantitative mass spectrometry. Data were compared to that of mild-to-moderate asthmatics (MMA, n=70) and healthy subjects (HC, n=98) from the same study. Measurements and main results: The concentrations of urinary endogenous steroid metabolites were substantially lower in SA than in MMA or HC. These differences were more pronounced in SA patients with detectable urinary OCS metabolites. Their dehydroepiandrosterone sulfate (DHEA-S) concentrations were <5% of those in HC, and cortisol concentrations were below the detection limit in 75% of females and 82% of males. The concentrations of EAAS in OCS-positive patients, as well as patients on high-dose ICS only, were more suppressed in females than males (p<0.05). Low levels of DHEA were associated with features of more severe disease and were more prevalent in females (p<0.05). The association between low EAAS and corticosteroid treatment was replicated in 289 of the SA patients at follow-up after 12-18 months. Conclusion: The pronounced suppression of endogenous anabolic androgens in females might contribute to sex differences regarding the prevalence of severe asthma.

14.
Adv Exp Med Biol ; 1426: 215-235, 2023.
Article in English | MEDLINE | ID: mdl-37464123

ABSTRACT

The application of mathematical and computational analysis, together with the modelling of biological and physiological processes, is transforming our understanding of the pathophysiology of complex diseases. This systems biology approach incorporates large amounts of genomic, transcriptomic, proteomic, metabolomic, breathomic, metagenomic and imaging data from disease sites together with deep clinical phenotyping, including patient-reported outcomes. Integration of these datasets will provide a greater understanding of the molecular pathways associated with severe asthma in each individual patient and determine their personalised treatment regime. This chapter describes some of the data integration methods used to combine data sets and gives examples of the results obtained using single datasets and merging of multiple datasets (data fusion and data combination) from several consortia including the severe asthma research programme (SARP) and the Unbiased Biomarkers Predictive of Respiratory Disease Outcomes (U-BIOPRED) consortia. These results highlight the involvement of several different immune and inflammatory pathways and factors in distinct subsets of patients with severe asthma. These pathways often overlap in patients with distinct clinical features of asthma, which may explain the incomplete or no response in patients undergoing specific targeted therapy. Collaboration between groups will improve the predictions obtained using a systems medicine approach in severe asthma.


Subject(s)
Asthma , Respiration Disorders , Humans , Proteomics , Systems Biology , Asthma/diagnosis , Asthma/genetics , Biomarkers/metabolism
15.
Allergy ; 78(11): 2906-2920, 2023 11.
Article in English | MEDLINE | ID: mdl-37287344

ABSTRACT

BACKGROUND: Because of altered airway microbiome in asthma, we analysed the bacterial species in sputum of patients with severe asthma. METHODS: Whole genome sequencing was performed on induced sputum from non-smoking (SAn) and current or ex-smoker (SAs/ex) severe asthma patients, mild/moderate asthma (MMA) and healthy controls (HC). Data were analysed by asthma severity, inflammatory status and transcriptome-associated clusters (TACs). RESULTS: α-diversity at the species level was lower in SAn and SAs/ex, with an increase in Haemophilus influenzae and Moraxella catarrhalis, and Haemophilus influenzae and Tropheryma whipplei, respectively, compared to HC. In neutrophilic asthma, there was greater abundance of Haemophilus influenzae and Moraxella catarrhalis and in eosinophilic asthma, Tropheryma whipplei was increased. There was a reduction in α-diversity in TAC1 and TAC2 that expressed high levels of Haemophilus influenzae and Tropheryma whipplei, and Haemophilus influenzae and Moraxella catarrhalis, respectively, compared to HC. Sputum neutrophils correlated positively with Moraxella catarrhalis and negatively with Prevotella, Neisseria and Veillonella species and Haemophilus parainfluenzae. Sputum eosinophils correlated positively with Tropheryma whipplei which correlated with pack-years of smoking. α- and ß-diversities were stable at one year. CONCLUSIONS: Haemophilus influenzae and Moraxella catarrhalis were more abundant in severe neutrophilic asthma and TAC2 linked to inflammasome and neutrophil activation, while Haemophilus influenzae and Tropheryma whipplei were highest in SAs/ex and in TAC1 associated with highest expression of IL-13 type 2 and ILC2 signatures with the abundance of Tropheryma whipplei correlating positively with sputum eosinophils. Whether these bacterial species drive the inflammatory response in asthma needs evaluation.


Subject(s)
Asthma , Haemophilus influenzae , Humans , Moraxella catarrhalis , Sputum/microbiology , Inflammasomes , Immunity, Innate , Neutrophil Activation , Lymphocytes , Asthma/diagnosis , Asthma/microbiology , Bacteria
16.
ERJ Open Res ; 9(3)2023 May.
Article in English | MEDLINE | ID: mdl-37260457

ABSTRACT

Introduction: Severe asthma is a complex, multidimensional disease. Optimal treatment, adherence and outcomes require shared decision-making, rooted in mutual understanding between patient and clinician. This study used a novel, patient-centred approach to examine the most bothersome aspects of severe asthma to patients, as seen from both perspectives in asthma registries. Methods: Across seven countries, 126 patients with severe asthma completed an open-ended survey regarding most the bothersome aspect(s) of their asthma. Patients' responses were linked with their treating clinician who also completed a free-text survey about each patient's most bothersome aspect(s). Responses were coded using content analysis, and patient and clinician responses were compared. Finally, asthma registries that are part of the SHARP (Severe Heterogeneous Asthma Research collaboration, Patient-centred) Clinical Research Collaboration were examined to see the extent to which they reflected the most bothersome aspects reported by patients. Results: 88 codes and 10 themes were identified. Clinicians were more focused on direct physical symptoms and were less focused on "holistic" aspects such as the effort required to self-manage the disease. Clinicians accurately identified a most bothersome symptom for 29% of patients. Agreement was particularly low with younger patients and those using oral corticosteroids infrequently. In asthma registries, patient aspects were predominantly represented in questionnaires. Conclusions: Results demonstrated different perspectives and priorities between patients and clinicians, with clinicians more focused on physical aspects. These differences must be considered when treating individual patients, and within multidisciplinary treatment teams. The use of questionnaires that include multifaceted aspects of disease may result in improved asthma research.

17.
ERJ Open Res ; 9(3)2023 May.
Article in English | MEDLINE | ID: mdl-37260461

ABSTRACT

Background: Many patients have uncontrolled asthma despite available treatments. Most of the new asthma therapies have focused on type 2 (T2) inflammation, leaving an unmet need for innovative research into mechanisms of asthma beyond T2 and immunity. An international group of investigators developed the International Collaborative Asthma Network (ICAN) with the goal of sharing innovative research on disease mechanisms, developing new technologies and therapies, organising pilot studies and engaging early-stage career investigators from across the world. This report describes the purpose, development and outcomes of the first ICAN forum. Methods: Abstracts were solicited from interdisciplinary early-stage career investigators with innovative ideas beyond T2 inflammation for asthma and were selected for presentation at the forum. Breakout sessions were conducted to discuss innovation, collaboration and research translation. Results: The abstracts were categorised into: 1) general omics and big data analysis; 2) lung-brain axis and airway neurology; 3) sex differences; 4) paediatric asthma; 5) new therapeutic targets inspired by airway epithelial biology; 6) new therapeutics targeting airway and circulating immune mediators; and 7) lung anatomy, physiology and imaging. Discussions revealed that research groups are looking for opportunities to further their findings using larger scale collaboration and the ability to translate their in vitro findings into clinical treatment. Conclusions: Through ICAN, teams that included interdisciplinary early-stage career investigators discussed innovation, collaboration and translation in asthma and severe asthma research. With a combination of fresh ideas and energetic, collaborative, global participation, ICAN has laid a firm foundation and model for future collaborative global asthma research.

18.
J Allergy Clin Immunol ; 152(4): 876-886, 2023 10.
Article in English | MEDLINE | ID: mdl-37315813

ABSTRACT

BACKGROUND: Patients with type-2 (T2) cytokine-low severe asthma often have persistent symptoms despite suppression of T2 inflammation with corticosteroids. OBJECTIVES: We sought to analyze whole blood transcriptome from 738 samples in T2-biomarker-high/-low patients with severe asthma to relate transcriptomic signatures to T2 biomarkers and asthma symptom scores. METHODS: Bulk RNA-seq data were generated for blood samples (baseline, week 24, week 48) from 301 participants recruited to a randomized clinical trial of corticosteroid optimization in severe asthma. Unsupervised clustering, differential gene expression analysis, and pathway analysis were performed. Patients were grouped by T2-biomarker status and symptoms. Associations between clinical characteristics and differentially expressed genes (DEGs) associated with biomarker and symptom levels were investigated. RESULTS: Unsupervised clustering identified 2 clusters; cluster 2 patients were blood eosinophil-low/symptom-high and more likely to be receiving oral corticosteroids (OCSs). Differential gene expression analysis of these clusters, with and without stratification for OCSs, identified 2960 and 4162 DEGs, respectively. Six hundred twenty-seven of 2960 genes remained after adjusting for OCSs by subtracting OCS signature genes. Pathway analysis identified dolichyl-diphosphooligosaccharide biosynthesis and assembly of RNA polymerase I complex as significantly enriched pathways. No stable DEGs were associated with high symptoms in T2-biomarker-low patients, but numerous associated with elevated T2 biomarkers, including 15 that were upregulated at all time points irrespective of symptom level. CONCLUSIONS: OCSs have a considerable effect on whole blood transcriptome. Differential gene expression analysis demonstrates a clear T2-biomarker transcriptomic signature, but no signature was found in association with T2-biomarker-low patients, including those with a high symptom burden.


Subject(s)
Asthma , Transcriptome , Humans , Asthma/drug therapy , Asthma/genetics , Asthma/diagnosis , Gene Expression Profiling , Biomarkers , Adrenal Cortex Hormones/therapeutic use
19.
Brain Behav Immun ; 111: 249-258, 2023 07.
Article in English | MEDLINE | ID: mdl-37146653

ABSTRACT

BACKGROUND: Growing evidence indicates high comorbid anxiety and depression in patients with asthma. However, the mechanisms underlying this comorbid condition remain unclear. The aim of this study was to investigate the role of inflammation in comorbid anxiety and depression in three asthma patient cohorts of the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) project. METHODS: U-BIOPRED was conducted by a European Union consortium of 16 academic institutions in 11 European countries. A subset dataset from subjects with valid anxiety and depression measures and a large blood biomarker dataset were analysed, including 198 non-smoking patients with severe asthma (SAn), 65 smoking patients with severe asthma (SAs), 61 non-smoking patients with mild-to-moderate asthma (MMA), and 20 healthy non-smokers (HC). The Hospital Anxiety and Depression Scale was used to measure anxiety and depression and a series of inflammatory markers were analysed by the SomaScan v3 platform (SomaLogic, Boulder, Colo). ANOVA and the Kruskal-Wallis test were used for multiple-group comparisons as appropriate. RESULTS: There were significant group effects on anxiety and depression among the four cohort groups (p < 0.05). Anxiety and depression of SAn and SAs groups were significantly higher than that of MMA and HC groups (p < 0.05. There were significant differences in serum IL6, MCP1, CCL18, CCL17, IL8, and Eotaxin among the four groups (p < 0.05). Depression was significantly associated with IL6, MCP1, CCL18 level, and CCL17; whereas anxiety was associated with CCL17 only (p < 0.05). CONCLUSIONS: The current study suggests that severe asthma patients are associated with higher levels of anxiety and depression, and inflammatory responses may underlie this comorbid condition.


Subject(s)
Asthma , Interleukin-6 , Humans , Asthma/complications , Anxiety , Comorbidity , Inflammation/complications , Biomarkers
20.
Am J Respir Crit Care Med ; 208(2): 142-154, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37163754

ABSTRACT

Rationale: Children with preschool wheezing or school-age asthma are reported to have airway microbial imbalances. Objectives: To identify clusters in children with asthma or wheezing using oropharyngeal microbiota profiles. Methods: Oropharyngeal swabs from the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) pediatric asthma or wheezing cohort were characterized using 16S ribosomal RNA gene sequencing, and unsupervised hierarchical clustering was performed on the Bray-Curtis ß-diversity. Enrichment scores of the Molecular Signatures Database hallmark gene sets were computed from the blood transcriptome using gene set variation analysis. Children with severe asthma or severe wheezing were followed up for 12-18 months, with assessment of the frequency of exacerbations. Measurements and Main Results: Oropharyngeal samples from 241 children (age range, 1-17 years; 40% female) revealed four taxa-driven clusters dominated by Streptococcus, Veillonella, Rothia, and Haemophilus. The clusters showed significant differences in atopic dermatitis, grass pollen sensitization, FEV1% predicted after salbutamol, and annual asthma exacerbation frequency during follow-up. The Veillonella cluster was the most allergic and included the highest percentage of children with two or more exacerbations per year during follow-up. The oropharyngeal clusters were different in the enrichment scores of TGF-ß (transforming growth factor-ß) (highest in the Veillonella cluster) and Wnt/ß-catenin signaling (highest in the Haemophilus cluster) transcriptomic pathways in blood (all q values <0.05). Conclusions: Analysis of the oropharyngeal microbiota of children with asthma or wheezing identified four clusters with distinct clinical characteristics (phenotypes) that associate with risk for exacerbation and transcriptomic pathways involved in airway remodeling. This suggests that further exploration of the oropharyngeal microbiota may lead to novel pathophysiologic insights and potentially new treatment approaches.


Subject(s)
Asthma , Hypersensitivity , Microbiota , Female , Male , Humans , Transcriptome , Respiratory Sounds/genetics , Asthma/genetics , Microbiota/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...