Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(11): 4867-4874, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38450604

ABSTRACT

The mechanism of isomerization of the known 2-phenyl,pyridine (phpy) derivatives [Ru(phpy-κC,N) (MeCN-trans-N)(terpy)]PF6, 2, to [Ru(phpy-κC,N)(MeCN-trans-C)(terpy)]PF6 (terpy = 2,2';6',2″-terpyridine), 3, at temperatures >50 °C has been investigated both by 1H NMR spectroscopy and by DFT calculations. The photoisomerization of 2 to 3 by UV light occurred also quantitatively in MeCN after 20 h at room temperature. A similar behavior to that of 2 could be established for the related compound [Ru(3-acridine-2'-C5H4N-κC,N)(MeCN-trans-N)(2,2';6',2″-terpyridine)]PF6, 6 (acridine = dibenzo[b,e]pyridine or 2,3-benzoquinoline), that was obtained from the reaction between [Ru(3-acridine-2'-C5H4N-κC,N) (MeCN)4]PF6, 4, and terpy in MeOH/MeCN at 60 °C for 24 h. Similar to 2, the isomerization of 6 to [Ru(3-acridine-2'-C5H4N-κC,N)(MeCN-trans-C) (terpy)]PF6, 7, could be induced thermally (48 h at 60 °C in pure MeOH) or photochemically under UV radiation in MeCN at room temperature. A compound closely related to 7 but in which MeCN was replaced by H2O was described earlier (Tanaka et al. Inorg. Chem. 2012, 51, 5386-539). The presence of water on this compound had a dramatic effect as far as the coordination of terpy was concerned as its isomerization to a compound related to 6 (in which H2O instead of MeCN is coordinated to Ru) occurred indeed photochemically via irradiation with visible light.

2.
Chemistry ; 30(7): e202302933, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37970753

ABSTRACT

Telluronium salts [Ar2 MeTe]X were synthesized, and their Lewis acidic properties towards a number of Lewis bases were addressed in solution by physical and theoretical means. Structural X-ray diffraction analysis of 21 different salts revealed the electrophilicity of the Te centers in their interactions with anions. Telluroniums' propensity to form Lewis pairs was investigated with OPPh3 . Diffusion-ordered NMR spectroscopy suggested that telluroniums can bind up to three OPPh3 molecules. Isotherm titration calorimetry showed that the related heats of association in 1,2-dichloroethane depend on the electronic properties of the substituents of the aryl moiety and on the nature of the counterion. The enthalpies of first association of OPPh3 span -0.5 to -5 kcal mol-1 . Study of the affinity of telluroniums for OPPh3 by state-of-the-art DFT and ab-initio methods revealed the dominant Coulombic and dispersion interactions as well as an entropic effect favoring association in solution. Intermolecular orbital interactions between [Ar2 MeTe]+ cations and OPPh3 are deemed insufficient on their own to ensure the cohesion of [Ar2 MeTe ⋅ Bn ]+ complexes in solution (B=Lewis base). Comparison of Grimme's and Tkatchenko's DFT-D4/MBD-vdW thermodynamics of formation of higher [Ar2 MeTe ⋅ Bn ]+ complexes revealed significant molecular size-dependent divergence of the two methodologies, with MBD yielding better agreement with experiment.

3.
Chemistry ; 29(43): e202300811, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37195577

ABSTRACT

The performance of six newly synthesized benzo[h]quinoline-derived acetonitrilo pentamethylcyclopentadienyl iridium(III) tetrakis(3,5-bis-trifluoromethylphenyl)borate salts bearing different substituents -X (-OMe, -H, -Cl, -Br, -NO2 and -(NO2 )2 ) on the heterochelating ligand were evaluated in the dehydro-O-silylation of benzyl alcohol and the monohydrosilylation of 4-methoxybenzonitrile by Et3 SiH, two reactions involving the electrophilic activation of the Si-H bond. The benchmark shows a direct dependence of the catalytic efficiency with the electronic effect of -X, which is confirmed by theoretical assessment of the intrinsic silylicities Π of hydridoiridium(III)-silylium adducts and by the theoretical evaluation of the propensity of hydridospecies to transfer the hydrido ligand to the activated substrate. The revisited analysis of the Ir-Si-H interactions shows that the most cohesive bond in hydridoiridium(III)-silylium adducts is the Ir-H one, while the Ir-Si is a weak donor-acceptor dative bond. The Si…H interaction in all the cases is noncovalent in nature and dominated by electrostatics confirming the heterolytic cleavage of the hydrosilane's Si-H bond in this key catalytically relevant species.

4.
J Am Chem Soc ; 144(40): 18359-18374, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36173688

ABSTRACT

Exploration of new organometallic systems based on polyhedral boron clusters has the potential to solve challenging chemical problems such as the stabilization of reactive intermediates and transition-state-like species postulated for E-H (E = H, B, C, Si) bond activation reactions. We report on facile and clean B-H activation of a hydroborane by a new iridium boron cluster complex. The product of this reaction is an unprecedented and fully characterized transition metal-stabilized boron cation or borenium. Moreover, this intermediate bears an unusual intramolecular B···H interaction between the hydrogen originating from the activated hydroborane and the cyclometallated metal-bonded boron atom of the boron cluster. This B···H interaction is proposed to be an arrested insertion of hydrogen into the Bcage-metal bond and the initiation step for iridium "cage-walking" around the upper surface of the boron cluster. The "cage-walking" process is supported by the hydrogen-deuterium exchange observed at the boron cluster, and a mechanism is proposed on the basis of theoretical methods with a special focus on the role of noncovalent interactions. All new compounds were isolated and fully characterized by NMR spectroscopy and elemental analysis. Key compounds were studied by single crystal X-ray diffraction and X-ray photoelectron spectroscopy.

5.
Chempluschem ; 87(4): e202100518, 2022 04.
Article in English | MEDLINE | ID: mdl-35103424

ABSTRACT

This work reports a combined experimental and theoretical study on the new dibenzo-1,5-ditellurocine 2-Te in order to get an overview on the parameters controlling conformational change and to explain the differences with sulfur and selenium analogues. The preference of the boat conformer over the chair one is revealed by DFT calculations. For 2-Te, a ΔG value of about 3 kJ/mol was calculated, close to the value measured by NMR (5 kJ/mol). However, DFT calculations with implicit solvation effects could not clearly establish the presence of an intramolecular Te…HC noncovalent interaction (NCI), as observed in the solid state. The Independent Gradient Model (IGM) methodology discloses an existent but probably not sufficiently discriminating Te…HC NCI. It also confirms that van der Waals interactions between phenyl rings is a source of stabilization of the boat conformer. Furthermore, electrostatic potential analysis suggests that chalcogen bonds between Te σ-holes and solvent might play an important role.


Subject(s)
Selenium , Models, Theoretical , Molecular Conformation , Selenium/chemistry , Solvents , Static Electricity
6.
Acc Chem Res ; 54(20): 3828-3840, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34617728

ABSTRACT

Noncovalent interactions (NCIs) have long interested a vast community of chemists who investigated their "canonical categories" derived from descriptive crystallography, e.g., H-bonds, π-π interactions, halogen/chalcogen/tetrel bonds, cation-π and C-H-π interactions, metallophilic interactions in the broad sense, etc. Recent developments in theoretical chemistry have enabled the treatment of noncovalent interactions under new auspices: dispersion-force-inclusive density functionals have emerged, which are reliable for modeling small to large molecular systems. It is possible to perform the full analysis of the contributions of London, Debye, and Keesom forces, i.e., the main components of van der Waals forces, by the DFT-D and ab initio methods at a reasonable computational cost. Our research has been focusing for now 15 years on the role of NCIs in the cohesion of organometallic complexes. NCIs are not only effective in Werner's secondary coordination sphere but also in the metal's primary one. The stabilization of electron-unsaturated transition metal complexes by hemichelation, metal-metal donor-acceptor complexes, and self-aggregation of cationic Rh(I) chromophores have indeed outlined the significance of the London dispersion force as an attractive force operating throughout the whole molecule or molecular assembly. The recent outburst of interest in C-H bond functionalization led us to address the broader question of reaction and catalyst engineering: although one can now satisfactorily analyze bonding and molecular cohesion in transition-metal-based organometallic systems, can modern theoretical methods guide reactivity exploration and the engineering of novel catalytic systems? We addressed this question by investigating the ambiphilic metal-ligand activation/concerted metalation-deprotonation mechanism involved in transition-metal-catalyzed directed C-H bond functionalization. This endeavor was initiated having in scope the construction of a rationale for the transposition of 4-5d metal chemistry to earth-abundant 3d metals. In this base-assisted mechanism of C-H bond metalation, agostic interactions are necessary but not sufficient because C-H bond breaking actually relies on the attractive NCI coding of a proton-transfer step and the minimization of metal-H repulsion. This Account introduces the recent shift of our research toward the construction of an NCI-inclusive paradigm of chemical reactivity engineering based on experimental efforts propped up by state-of-the-art theoretical tools.

7.
Acta Crystallogr E Crystallogr Commun ; 77(Pt 6): 672-676, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34164150

ABSTRACT

The title compound, C16H11ClN2O2, was obtained by diazo-tization of 2-amino-4-chloro-phenol followed by a coupling reaction with ß-naphthol. There are two mol-ecules (A and B) in the asymmetric unit. The crystal structure features only one type of inter-molecular inter-action, that is strong hydrogen bonds involving the hydroxyl group. The naphthol and phenol fragments attached to the C=N-N- moiety exhibit an s-trans conformation. In addition, those fragments are almost coplanar, subtending a dihedral angle of 13.11 (2)° in mol-ecule A and 10.35 (2)° in mol-ecule B. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (32.1%), C⋯H/H⋯C (23.1%), Cl⋯H/H⋯Cl (15.2%), O⋯H/H⋯O (12.8%) and C⋯C (9%) contacts.

8.
Chemphyschem ; 21(18): 2136-2142, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32619292

ABSTRACT

To figure out the possible role of 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) as well as to provide reference thermochemical data in solution, the formation of Lewis acid-base complexes between HFIP (Lewis acid) and a series of 8 different Lewis bases (3 sulfoxides, 3 Nsp2 pyridine derivatives, 1 aromatic amine, 1 cyclic aliphatic ether) was examined by isothermal titration calorimetry (ITC) experiments and static density functional theory augmented with Dispersion (DFT-D) calculations. Measured ITC association enthalpy values (ΔHa ) lie between -9.3 and -14 kcal mol-1 . Computations including a PCM implicit solvation model produced similar exothermicity of association of all studied systems compared to the ITC data with ΔHa values ranging from -8.5 to -12.7 kcal mol-1 . An additional set of calculations combining implicit and explicit solvation by chlorobenzene of the reactants, pointed out the relatively low interference of the solvent with the HFIP-base complexation: its main effect is to slightly enhance the Gibbs energy of the HFIP-Lewis base association. It is speculated that the interactions of bulk HFIP with Lewis bases therefore may significantly intervene in catalytic processes not only via the dynamic microstructuring of the medium but also more explicitly by affecting bonds' polarization at the Lewis bases.

9.
Chemistry ; 26(41): 8916-8925, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32212281

ABSTRACT

The pentamethylcyclopentadienyl N-heterocyclic carbene nickel complex [Ni(η5 -C5 Me5 )Cl(IMes)] (IMes=1,3-dimesitylimidazol-2-ylidene) efficiently catalyses the anti-Markovnikov hydroboration of alkenes with catecholborane in the presence of a catalytic amount of potassium tert-butoxide, and joins the very exclusive club of nickel catalysts for this important transformation. Interestingly, the regioselectivity can be reversed in some cases by using pinacolborane instead of catecholborane. Mechanistic investigations involving control experiments, 1 H and 11 B NMR spectroscopy, cyclic voltammetry, piezometric measurements and DFT calculations suggest an initial reduction of the NiII precursor to a NiI active species with the concomitant release of H2 . The crucial role of the alkoxo-catecholato-borohydride species resulting from the reaction of potassium tert-butoxide with catecholborane in the formation of an intermediate nickel-hydride species that would then be reduced to the NiI active species, is highlighted.

10.
Phys Chem Chem Phys ; 21(36): 20486-20498, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31501846

ABSTRACT

The CMD/AMLA mechanisms of cyclopalladation and the parent fictitious but challenging cyclonickelation of N,N-dimethylbenzylamine have been investigated by joint DFT-D and DLPNO-CCSD(T) methods assisted by QTAIM-based noncovalent interaction plots (NCI plots) and interacting quantum atoms (IQA) analyses, and the local energy decomposition (LED) procedure. Bader charges, NCI plots, IQA and the LED analyses clearly suggest that coulombic interactions play an important role and somewhat govern the whole process that is sensitive to the charge borne by the metal centre. It is found that replacement of acetate by acetamidate used as a ligand and a base significantly lowers the barrier to the formation of the key agostic intermediate. The latter shows a peculiar polarization by its immediate ligand environment where a significant electrostatic CHO interaction with the neighboring carboxylato ligand competes with the strong propensity of the latter to bind the metal center, which is stronger in the agostic intermediate when the carboxylato ligand is the acetate and when the metal is Ni. It is also shown that the hereby idealized cyclonickelation is disfavored as compared to cyclopalladation owing to enhanced electrostatic repulsion in almost all stages of the CMD mechanism.

11.
Chemistry ; 24(68): 17921-17926, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30324674

ABSTRACT

A new way of introducing a N-heterocyclic carbene cap onto cyclodextrins has been devised. The benzimidazolium intermediates were found to behave as receptors towards cavity matching anions. The corresponding C1 - and C2 -symmetrical regioisomeric carbene gold(I) complexes have been tested in a benchmark asymmetric cycloisomerization of 1,6-enynes. Up to 50 % ee was achieved for the enantioselective cycloisomerization of N-allyl-4-methyl-N-(3-phenylprop-2-yn-1-yl)benzenesulfonamide.

12.
Chemistry ; 24(66): 17577-17589, 2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30222217

ABSTRACT

The reaction of H3 SiR (R=Ph, nBu) with cationic η5 -C5 Me5 - (Cp*) and benzo[h]quinolinyl-based iridacycle [1 b]+ gives rise to new [(IrH)→SiRH2 ]+ adducts. In the presence of THF these adducts readily undergo elimination of H2 gas at subambient temperature to form THF-stabilized metallacyclic IrIII silylene complexes, which were characterized in situ by NMR spectroscopy, trapped in minute amounts by reactive crystallization, and structurally characterized by XRD. Theoretical investigations (static DFT-D reaction-energy profiling, ETS-NOCV) support the promoting role of THF in the H2 elimination step and the consolidation of the Ir-to-Si interaction in the spontaneous (ΔG<0) formation of Ir silylenes in the presence of THF. Mechanistic insights indicate that the Ir silylene species arising from the [1 b]+ /phenylsilane system are relevant catalytic species in the hydrodefluorination of fluoroalkanes.

13.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 74(Pt 3): 255-263, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29927388

ABSTRACT

The interactions between phosphines and boranes in crystal structures have been investigated by analyzing data from the Cambridge Structural Database (CSD). The interactions between phosphines and boranes were classified into three types; two types depend on groups on the boron atom, whereas the third one involves frustrated Lewis pairs (FLPs). The data enabled geometric parameters in structures to be compared with phosphine-borane FLPs with classical Lewis pairs. Most of the crystal structures (78.1%) contain BH3 as the borane group. In these systems, the boron-phosphorus distance is shorter than systems where the boron atom is surrounded by groups other than hydrogen atoms. The analysis of the CSD data has shown that FLPs have a tendency for the longest boron-phosphorus distance among all phosphine-borane pairs, as well as different other geometrical parameters. The results show that most of the frustrated phosphine-borane pairs found in crystal structures are bridged ones. The minority of non-bridged FLP structures contain, beside phosphorus and boron atoms, other heteroatoms (O, N, S for instance).

14.
Angew Chem Int Ed Engl ; 57(17): 4668-4672, 2018 04 16.
Article in English | MEDLINE | ID: mdl-29450952

ABSTRACT

Herein we disclose the synthesis of original chiral scaffolds-ortho-orientated terphenyls presenting two atropisomeric Ar-Ar axes. These unusual structures were built up by using the C-H activation approach, and remarkably, both chiral axes were controlled with excellent stereoselectivity in a single transformation. During the reaction, not only does atroposelective functionalization of a biaryl precursor occur to establish one stereogenic axis, but an unprecedented atropo-stereoselective C-H arylation also takes place to generate the second stereogenic element. These enantiomerically pure ortho-terphenyls show an original tridimensional structure and thus constitute a unique foundation for building up a library of enantiomerically pure bidentate ligands, such as the new ligands S/N-Biax and diphosphine BiaxPhos.

15.
Chemistry ; 23(62): 15594-15600, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-29024056

ABSTRACT

Stereoselective functionalization of aliphatic C-H bonds presents a great challenge. Following this target, we disclose herein an original strategy towards direct arylation of aliphatic chains at ß-methylene position based on a use of amide-sulfoxide bicoordinating directing group. Although moderate to high chiral induction (up to 9:1 d.r.) is achieved, diastereomerically pure compounds may be afforded by simple separation of diastereomeric products by silica gel chromatography. Accordingly, this reaction allows preparation of a large scope of high-value scaffolds in synthetically useful yields while recyclable character of our chiral auxiliary brings an additional benefit. A potential of this methodology to build up original molecules by sequential diarylation and expedient (two step) synthesis of a biologically active compound are further disclosed. Finally a first example of stereoselective direct acetoxylation of aliphatic chains is reported.

16.
Chemistry ; 23(67): 17058-17069, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28877385

ABSTRACT

The computation of metal-silyl interaction energies indicates the existence of situations in which the silyl group behaves as a Z-type ligand according to the Green method of covalent-bond classification. There is a scale of relative intrinsic silylicity Π, defined as the ratio of the intrinsic silyl-to-triflate interaction energy of a silyltriflate as a reference compound relative to the silyl-to-metal interaction of given complex, that can reveal in a straightforward manner the propensity of SiR3 groups to behave chemically as metal-bound "silylium" ions, namely, [SiR3 ]+ . Emblematic cases, either taken from the Cambridge Structural Database (CSD) or constructed for the purpose of this study, were also investigated from the viewpoints of extended transition-state natural orbitals for chemical valence (ETS-NOCV) and quantum theory of atoms in molecules (QTAIM) analyses. It is shown in the case of POBMUP-which is the iridium 1,3-bis[(di-tert-butylphosphino)oxy]benzene (POCOP) complex isolated by Brookhart et al.-how slight variations of molecular charge and structure can drastically affect the relative intrinsic silylicity of the SiEt3 group that is weakly bonded to the hydrido-iridium motif.

17.
Dalton Trans ; 46(25): 8125-8137, 2017 Jun 27.
Article in English | MEDLINE | ID: mdl-28574552

ABSTRACT

Kinetically unstable heteroleptic trans-bispalladacycles were isolated by using hemichelation. Three structures of trans isomers and five of cis isomers were characterized by X-ray diffraction analysis. The ready trans-to-cis isomerization of such hemichelates that was monitored by variable temperature NMR experiments is facilitated dynamically because the Pd(ii) center can preserve its square planar coordination in a rather low lying transition state, which was localized by methods of the density functional theory. This process is not achievable in the isomerization of conventional homoleptic trans-bispalladacycles since it involves the preliminary partial chelate decoordination and an unfavorable high-lying planar trigonal coordinated - or Y-shaped-Pd(ii) transition state according to DFT investigations.

18.
Chemistry ; 22(48): 17397-17406, 2016 Nov 21.
Article in English | MEDLINE | ID: mdl-27792256

ABSTRACT

An original and recyclable chiral bidentate aniline-sulfoxide-based directing group has been developed. This auxiliary allows challenging stereoselective Pd-catalyzed direct functionalization of small cycloalkanes through C-aryl and C-alkyl bond formation. Although moderate diastereoselectivities are observed, both optically pure enantiomers of the highly functionalized products can be obtained separately by simple silica gel chromatography and cleavage of the chiral auxiliary. This strategy was further applied to the preparation of enantiomerically pure 1,2,3-trisubstituted cyclopropane carboxylic acid derivatives, with three stereogenic centers and bearing both alkyl and aromatic substituents. These molecular scaffolds are not yet reported in the literature. The synthetic utility of this approach is validated by the chiral auxiliary being readily cleaved and recovered posteriori to the C-H activation step, without deterioration of its optical purity. Finally, an unprecedented palladacycle intermediate generated through C-H activation of the cyclopropane moiety has been isolated and fully characterized. Initial DFT calculations shed additional light on the reactivity of this original intermediate.

19.
Acta Crystallogr E Crystallogr Commun ; 72(Pt 8): 1093-8, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27536389

ABSTRACT

In the copper(II) complex, bis-{(E)-1-[(2,4,6-tri-bromo-phen-yl)diazen-yl]naph-thalen-2-olato}copper(II), [Cu(C16H8Br3N2O)2], (I), the metal cation is coord-inated by two N atoms and two O atoms from two bidentate (E)-1-[(2,4,6-tri-bromo-phen-yl)diazen-yl]naphthalen-2-olate ligands, forming a slightly distorted square-planar environment. In one of the ligands, the tri-bromo-benzene ring is inclined to the naphthalene ring system by 37.4 (5)°, creating a weak intra-molecular Cu⋯Br inter-action [3.134 (2) Å], while in the other ligand, the tri-bromo-benzene ring is inclined to the naphthalene ring system by 72.1 (6)°. In the isotypic nickel(II) and palladium(II) complexes, namely bis-{(E)-1-[(2,4,6-tri-bromo-phen-yl)diazen-yl]naphthalen-2-olato}nickel(II), [Ni(C16H8Br3N2O)2], (II), and bis-{(E)-1-[(2,4,6-tri-bromo-phen-yl)diazen-yl]naphthalen-2-olato}palladium(II), [Pd(C16H8Br3N2O)2], (III), respectively, the metal atoms are located on centres of inversion, hence the metal coordination spheres have perfect square-planar geometries. The tri-bromo-benzene rings are inclined to the naphthalene ring systems by 80.79 (18)° in (II) and by 80.8 (3)° in (III). In the crystal of (I), mol-ecules are linked by C-H⋯Br hydrogen bonds, forming chains along [010]. The chains are linked by C-H⋯π inter-actions, forming sheets parallel to (011). In the crystals of (II) and (III), mol-ecules are linked by C-H⋯π inter-actions, forming slabs parallel to (10-1). For the copper(II) complex (I), a region of disordered electron density was corrected for using the SQUEEZE routine in PLATON [Spek (2015 ▸). Acta Cryst. C71, 9-18]. The formula mass and unit-cell characteristics of the disordered solvent mol-ecules were not taken into account during refinement.

20.
Chemistry ; 22(39): 14036-14041, 2016 Sep 19.
Article in English | MEDLINE | ID: mdl-27534924

ABSTRACT

The combination of an iridium(III) metallacycle and 1,3,5-trimethoxybenzene catalyses rapidly and selectively the reduction of esters to aldehydes at room temperature with high yields through hydrosilylation followed by hydrolysis. The ester reduction involves the trapping of transient silyl cations by the 1,3,5-trimethoxybenzene co-catalyst, supposedly by formation of an arenium intermediate whose role was addressed by DFT calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...