Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(8)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35458830

ABSTRACT

At the local scale, environmental parameters often require monitoring by means of affordable measuring techniques and technologies given they need to be frequently surveyed. Streamflow in riverbeds or in channels is a hydrological variable that needs to be monitored in order to keep the runoff regimes under control and somehow forecast floods, allowing prevention of damage for people and infrastructure. Moreover, measuring such a variable is always extremely important for the knowledge of the environmental status of connected aquatic ecosystems. This paper presents a new approach to assessing hydrodynamic features related to a given channel by means of a beamforming technique that was applied to video sensing. Different features have been estimated, namely the flow velocity, the temperature, and the riverbed movements. The applied beamforming technique works on a modified sum and delay method, also using the Multiple Signal Classification algorithm (MUSIC), by acting as Synthetic Aperture Radar (SAR) post-processing. The results are very interesting, especially compared to the on-site measured data and encourage the use of affordable video sensors located along the channel or river course for monitoring purposes. The paper also illustrates the use of beamforming measurements to be calibrated by means of conventional techniques with more accurate data. Certainly, the results can be improved; however, they indicate some margins of improvements and updates. As metrics of assessment, a histogram of greyscale/pixels was adopted, taking into account the example of layers and curve plots. They show changes according to the locations where the supporting videos were obtained.


Subject(s)
Ecosystem , Radar , Algorithms , Floods , Humans , Rivers
2.
Sensors (Basel) ; 21(12)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207454

ABSTRACT

Waves propagating on the water surface can be considered as propagating in a dispersive medium, where gravity and surface tension at the air-water interface act as restoring forces. The velocity at which energy is transported in water waves is defined by the group velocity. The paper reports the use of video-camera observations to study the impact of water waves on an urban shore. The video-monitoring system consists of two separate cameras equipped with progressive RGB CMOS sensors that allow 1080p HDTV video recording. The sensing system delivers video signals that are processed by a machine learning technique. The scope of the research is to identify features of water waves that cannot be normally observed. First, a conventional modelling was performed using data delivered by image sensors together with additional data such as temperature, and wind speed, measured with dedicated sensors. Stealth waves are detected, as are the inverting phenomena encompassed in waves. This latter phenomenon can be detected only through machine learning. This double approach allows us to prevent extreme events that can take place in offshore and onshore areas.


Subject(s)
Algorithms , Machine Learning , Monitoring, Physiologic , Video Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...