Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Mol Sci ; 25(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38612885

ABSTRACT

Type 2 diabetes mellitus, a condition preceded by prediabetes, is documented to compromise skeletal muscle health, consequently affecting skeletal muscle structure, strength, and glucose homeostasis. A disturbance in skeletal muscle functional capacity has been demonstrated to induce insulin resistance and hyperglycemia. However, the modifications in skeletal muscle function in the prediabetic state are not well elucidated. Hence, this study investigated the effects of diet-induced prediabetes on skeletal muscle strength in a prediabetic model. Male Sprague Dawley rats were randomly assigned to one of the two groups (n = 6 per group; six prediabetic (PD) and six non-pre-diabetic (NPD)). The PD group (n = 6) was induced with prediabetes for 20 weeks. The diet that was used to induce prediabetes consisted of fats (30% Kcal/g), proteins (15% Kcal/g), and carbohydrates (55% Kcal/g). In addition to the diet, the experimental animals (n = 6) were supplied with drinking water that was supplemented with 15% fructose. The control group (n = 6) was allowed access to normal rat chow, consisting of 35% carbohydrates, 30% protein, 15% fats, and 20% other components, as well as ordinary tap water. At the end of week 20, the experimental animals were diagnosed with prediabetes using the American Diabetes Association (ADA) prediabetes impaired fasting blood glucose criteria (5.6-6.9 mmol/L). Upon prediabetes diagnosis, the animals were subjected to a four-limb grip strength test to assess skeletal muscle strength at week 20. After the grip strength test was conducted, the animals were euthanized for blood and tissue collection to analyze glycated hemoglobin (HbA1c), plasma insulin, and insulin resistance using the homeostatic model of insulin resistance (HOMA-IR) index and malondialdehyde (MDA) concentration. Correlation analysis was performed to examine the associations of skeletal muscle strength with HOMA-IR, plasma glucose, HbA1c, and MDA concentration. The results demonstrated increased HbA1c, FBG, insulin, HOMA-IR, and MDA concentrations in the PD group compared to the NPD group. Grip strength was reduced in the PD group compared to the NPD group. Grip strength was negatively correlated with HbA1c, plasma glucose, HOMA-IR, and MDA concentration in the PD group. These observations suggest that diet-induced prediabetes compromises muscle function, which may contribute to increased levels of sedentary behavior during prediabetes progression, and this may contribute to the development of hyperglycemia in T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Insulin Resistance , Prediabetic State , Male , Rats , Animals , Rats, Sprague-Dawley , Prediabetic State/etiology , Blood Glucose , Diabetes Mellitus, Type 2/etiology , Glycated Hemoglobin , Diet/adverse effects , Muscle, Skeletal , Insulin , Insulin, Regular, Human
2.
Int J Mol Sci ; 25(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38203642

ABSTRACT

The skeletal muscle plays a critical role in regulating systemic blood glucose homeostasis. Impaired skeletal muscle glucose homeostasis associated with type 2 diabetes mellitus (T2DM) has been observed to significantly affect the whole-body glucose homeostasis, thereby resulting in other diabetic complications. T2DM does not only affect skeletal muscle glucose homeostasis, but it also affects skeletal muscle structure and functional capacity. Given that T2DM is a global health burden, there is an urgent need to develop therapeutic medical therapies that will aid in the management of T2DM. Prediabetes (PreDM) is a prominent risk factor of T2DM that usually goes unnoticed in many individuals as it is an asymptomatic condition. Hence, research on PreDM is essential because establishing diabetic biomarkers during the prediabetic state would aid in preventing the development of T2DM, as PreDM is a reversible condition if it is detected in the early stages. The literature predominantly documents the changes in skeletal muscle during T2DM, but the changes in skeletal muscle during prediabetes are not well elucidated. In this review, we seek to review the existing literature on PreDM- and T2DM-associated changes in skeletal muscle function.


Subject(s)
Diabetes Mellitus, Type 2 , Musculoskeletal Physiological Phenomena , Prediabetic State , Humans , Muscle, Skeletal , Blood Glucose
SELECTION OF CITATIONS
SEARCH DETAIL
...