Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Clim Change ; 165(1): 12, 2021.
Article in English | MEDLINE | ID: mdl-33758443

ABSTRACT

Humans have significantly altered the energy balance of the Earth's climate system mainly not only by extracting and burning fossil fuels but also by altering the biosphere and using halocarbons. The 3rd US National Climate Assessment pointed to a need for a system of indicators of climate and global change based on long-term data that could be used to support assessments and this led to the development of the National Climate Indicators System (NCIS). Here we identify a representative set of key atmospheric indicators of changes in atmospheric radiative forcing due to greenhouse gases (GHGs), and we evaluate atmospheric composition measurements, including non-CO2 GHGs for use as climate change indicators in support of the US National Climate Assessment. GHG abundances and their changes over time can provide valuable information on the success of climate mitigation policies, as well as insights into possible carbon-climate feedback processes that may ultimately affect the success of those policies. To ensure that reliable information for assessing GHG emission changes can be provided on policy-relevant scales, expanded observational efforts are needed. Furthermore, the ability to detect trends resulting from changing emissions requires a commitment to supporting long-term observations. Long-term measurements of greenhouse gases, aerosols, and clouds and related climate indicators used with a dimming/brightening index could provide a foundation for quantifying forcing and its attribution and reducing error in existing indicators that do not account for complicated cloud processes.

2.
Sci Adv ; 5(6): eaaw0076, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31183402

ABSTRACT

Long-term atmospheric CO2 mole fraction and δ13CO2 observations over North America document persistent responses to the El Niño-Southern Oscillation. We estimate these responses corresponded to 0.61 (0.45 to 0.79) PgC year-1 more North American carbon uptake during El Niño than during La Niña between 2007 and 2015, partially offsetting increases of net tropical biosphere-to-atmosphere carbon flux around El Niño. Anomalies in derived North American net ecosystem exchange (NEE) display strong but opposite correlations with surface air temperature between seasons, while their correlation with water availability was more constant throughout the year, such that water availability is the dominant control on annual NEE variability over North America. These results suggest that increased water availability and favorable temperature conditions (warmer spring and cooler summer) caused enhanced carbon uptake over North America near and during El Niño.

SELECTION OF CITATIONS
SEARCH DETAIL
...