Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(46): 25098-25102, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37947488

ABSTRACT

Olefins are widely available at low costs, which explains the usefulness of developing new methods for their functionalization. Here we report a simple protocol that uses a photoredox catalyst and an inexpensive thiol catalyst to stitch together two olefins, forming a new C-C bond. Specifically, an electron-poor olefin is reduced by the photoredox catalyst to generate, upon protonation, a carbon radical, which is then captured by a neutral olefin. This intermolecular cross-coupling process provides a tool for rapidly synthesizing sp3-dense molecules from olefins using an unconventional disconnection.

2.
J Am Chem Soc ; 145(1): 47-52, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36574031

ABSTRACT

We report a photochemical method for the functionalization of pyridines with radicals derived from allylic C-H bonds. Overall, two substrates undergo C-H functionalization to form a new C(sp2)-C(sp3) bond. The chemistry harnesses the unique reactivity of pyridinyl radicals, generated upon single-electron reduction of pyridinium ions, which undergo effective coupling with allylic radicals. This novel mechanism enables distinct positional selectivity for pyridine functionalization that diverges from classical Minisci chemistry. Crucial was the identification of a dithiophosphoric acid that masters three catalytic tasks, sequentially acting as a Brønsted acid for pyridine protonation, a single electron transfer (SET) reductant for pyridinium ion reduction, and a hydrogen atom abstractor for the activation of allylic C(sp3)-H bonds. The resulting pyridinyl and allylic radicals then couple with high regioselectivity.


Subject(s)
Hydrogen , Pyridines , Pyridines/chemistry , Hydrogen/chemistry , Electron Transport , Reducing Agents , Catalysis
3.
Org Lett ; 23(22): 8973-8977, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34752109

ABSTRACT

Difluoroboryl complexes obtained from N-acyl hydrazones upon brief treatment with boron trifluoride and allylic silane serve as efficient acceptors of alkyl radicals. The reaction of the boryl chelates with carboxylic acids in the presence of an acridine-type photocatalyst leading to N-acyl hydrazides is described. The efficiency of addition at the C═N bond of the chelates is determined by the formation of a nitrogen-centered radical stabilized by the boron-containing heterocyclic ring.

4.
Beilstein J Org Chem ; 16: 3104-3108, 2020.
Article in English | MEDLINE | ID: mdl-33437323

ABSTRACT

A method for the one-step construction of 3,3,4,4-tetrafluorinated piperidines from nitrones and readily accessible tetrafluorinated iodobromobutane is described. The reaction requires an excess amount of ascorbic acid as the terminal reductant and is performed in the presence of an iridium photocatalyst activated by blue light. The annelation is a result of a radical addition at the nitrone, intramolecular nucleophilic substitution, and reduction of the N-O bond.

SELECTION OF CITATIONS
SEARCH DETAIL
...